ENERGETSKE TRANSFORMACIJE
Sadržaj
- 1 Uvod
- 2 Proizvodnja električne energije
- 2.1 Termoelektrane
- 2.1.1 Uvod
- 2.1.2 Povijest
- 2.1.3 Parno i plinsko-turbinsko postrojenje
- 2.1.4 Plinsko-turbinsko postrojenje
- 2.1.5 Parno-turbinsko postrojenje
- 2.1.6 Kombinirani procesi
- 2.1.7 Termoelektrane na ugljen i plin
- 2.1.8 Termoelektrane u Hrvatskoj
- 2.1.9 Zaštita okoliša
- 2.1.10 Kretanja fosilnih goriva u svjetskoj energetici
- 2.1.11 Potrošnja energije
- 2.1.12 Trendovi
- 2.2 Nuklearne elektrane
- 2.3 Fuzijske elektrane
- 2.4 Obnovljivi izvori
- 2.5 Distribuirana proizvodnja
- 2.6 Otočna proizvodnja
- 2.1 Termoelektrane
- 3 KGH sustavi (klimatizacija, grijanje i hlađenje)
- 4 Kogeneracija
- 5 Trigeneracija
- 6 Gorive ćelije i vodik
- 7 Poligeneracija
- 8 Rafiniranje nafte
Uvod
U fizici kao i tehnici (inženjerstvu) pod pojmom energetske transformacije ili pretvorbe, smatramo svaki proces pretvorbe energije iz jednog oblika u drugi. Promjena energije u sustavima može biti ostvarena samo dodavanjem ili oduzimanjem energije iz sustava, jer je energija količina koja je sačuvana. Energija u sustavu može biti transformirana tako što se nalazi u drugom obliku, pa se ta energija u raznim oblicima koristi za vršenje raznolikih fizičkih radova.
Energija fosilnih goriva, sunčevog zračenja ili nuklearnog goriva može biti pretvorena u drugi oblik energije poput električne, mehaničke ili toplinske koje su nam potrebnije pa se stoga koriste strojevi za pretvorbu energije. Stupanj korisnosti stroja okarakteriziran je vrijednošću izlazne jedinice koja je dobivena u samom procesu pretvorbe. Energetske transformacije su bitne pri primjeni energetskih koncepata u raznim prirodoslovnim znanostima kao što su biologija, kemija, geologija, kozmologija.
Energija se može pretvoriti u oblik koji je potreban u drugom prirodnom procesu ili stroju te da omogući pogodnosti u društvu poput grijanja, rasvjete ili kretanja. Na primjer, motor s unutarnjim izgaranjem pretvara potencijalnu kemijsku energiju goriva i zraka u mehaničku energiju koja omogućava gibanje vozila ili kao što solarne ćelije pretvaraju sunčevu energiju u električnu kojom se pali svjetlo ili napaja računalo.
Opći naziv za uređaj koji pretvara energiju iz jednog oblika u drugi je pretvarač.
Na primjer, kod elektrane na ugljen se događaju sljedeće transformacije energije:
- Kemijska energija u ugljenu pretvara se u toplinsku energiju
- Toplinska energija se pretvara u kinetičku energiju u obliku pare
- Kinetička energija se pretvara u mehaničku u turbini
- Mehanička energija turbine se pretvara u električnu energiju
Proizvodnja električne energije
Termoelektrane
Uvod
Termoelektrane su energetska postrojenja čija je osnovna namjena proizvodnja i transformacija primarnih oblika energije u koristan rad, koji se kasnije u obliku mehaničke energije dalje iskorištava za proizvodnju električne energije (Slika 1). Imamo pretvaranje kemijske energije u toplinsku koja se različitim procesima predaje nekom radnom mediju. Radni medij služi kao prijenosnik te energije do mjesta gdje će ona biti dalje transformirana i iskorištena. Termoelektrana se sastoji od mnogo različitih dijelova koji tvore jednu kompleksnu cjelinu. Najvažnije dijelove koji tvore zatvorenu cjeline unutar jedne termoelektrane su: generator pare, turbina, generator električne energije i kondenzator, no o tim cjelinama će biti govora u daljnjem tekstu. Glavna primjena i svrha termoenergetskih postrojenja je proizvodnja pare koja će pokretati turbinu, a zatim i generator električne energije.
U samom procesu dobivena toplinska energija može se iskorištavati, ne samo za paru koja će ići u turbinu, već i kao energija koja će poslužiti kod grijanja. Za potrebe grijanje koristi se para manjih toplinskih i temperaturnih parametara. Najveći problem kod ovih postrojenja su gubici i velike emisije stakleničkih plinova, a naš cilj je da te gubitke i emisije pokušamo smanjiti i samim time povećati iskoristivost samog procesa i cijelog postrojenja uopće.
Povijest
Primitivne verzije parnog stroja javljaju se već u antici dok se konkretnija primjena javlja u 17. stoljeću. Industrijska revolucija započinje izumom parnog stroja (James Watt)(1765.) koji je radio s pretlakom (Slika 2). Glavni parametri termoenergetskih postrojenja su se mijenjali kroz povijest, a najveće promijene su doživjeli tlak i temperatura pare. Od nekih 15 bara i 300 °C došli smo do današnjih 100-tinjak bara i oko 600 °C. Količina pare se povećava, a samim time i snaga postrojenja te tako smanjujemo potrošnju goriva i podižemo iskoristivost postrojenja. Daljnje povećanje iskoristivosti postrojenja je postignuto primjenom pregrijača i međupregrijača, a nova revolucija nastaje razvojem takozvanih blok postrojenja (kotao i turbina su jedan zatvoreni upravljački krug).
Možemo pratiti povijesni razvoj turbina, generatora pare te plinskih turbina. Ideje su postojale i postupno se razvijale kroz povijest, ali za termoelektrane kakve mi danas poznajemo najvažnija je stvar patentiranje i razvoj parne turbine (1791.) Plinska turbina dolazi mnogo kasnije, početkom 20. stoljeća. Danas imamo situaciju da se oko 80% električne energije u industrijski razvijenim zemljama dobiva iz termoenergetskih izvora (tu naravno ubrajamo i plinska, ali i nuklearna postrojenja). U modernom društvu potreba za električnom energijom raste, a samim time raste i potrošnja električne energije po stanovniku, što je ujedno i pokazatelj gospodarskog razvitka pojedine zemlje. Osim što proizvode električnu energiju termoenergetska postrojenja služe i za proizvodnju topline koja je također itekako bitna u krajevima gdje je potrebno grijanje. Važnost ovakvih postrojenja raste iz dana u dan bez obzira na nove izvore i načine proizvodnje električne energije. Naravno u svemu tome raste i opterećenje na okoliš što je pitanje kojim se također moramo aktivno pozabaviti kad govorimo o termoelektranama. O zaštiti okoliša nešto kasnije. Na projektiranju, izgradnji, radu i održavanju jedne termoelektrane sudjeluje velika grupa ljudi, inženjera različitih struka. Svi ti ljudi objedinjuju široki spektara znanja potrebnih da se obave svi zadaci i osigura nesmetan rad jedne elektrane.
Parno i plinsko-turbinsko postrojenje
Već je rečeno da u klasičnim termoelektranama izgaranjem goriva proizvodimo toplinu koja kasnije služi za proizvodnju pare. Proizvedena para odvodi se u turbinu gdje na razne načine ekspandira stvarajući moment koji pak služi za proizvodnu električne energije u generatoru. Dakle parne turbine su najčešće i najvažnije te ćemo najviše govoriti o njima.Druga velika skupina su plinske turbine koje se prilično razlikuju od parnih turbina što u konstrukciji što u načinu rada.
Plinsko-turbinsko postrojenje
Plinsko-turbinska postrojenja rade na principu Brayton-ovog ciklusa (Slika 3). Dakako da je Braytonov proces idealizirani kružni proces koji ne odgovara u potpunosti sa stvarnim promjenama stanja u plinskim turbinama. Zbog trenja i turbulencije tijekom kompresije, izgaranja, te ekspanzije, promjene stanja u p,v dijagramu neće pratiti ravnotežne izentrope i izobare. Najprije se usisava zrak tlaka p1, temperature T1 centrifugalnim/aksijalnim kompresorom, te ga se komprimira na tlak p2, te na temperaturu T2. Tlak p2 je ujedno i najveći tlak kružnog procesa plinske turbine. U idealiziranom sustavu bi ova promjena bila izentrospka. Međutim, zbog već spomenutog trenja i turbulencije će se dio energije fluida pretvoriti u toplinu, te će u stvarnosti temperatura nakon kompresije biti T2' (T2' > T2). Komprimirani fluid tlaka p2, T2' se onda dovodi u komoru izgaranja. Tu se zrak visoke temperature miješa sa plinovitim gorivom gdje onda izgara. U idealnim uvjetima bi se izgaranje smatralo izobarnim procesom. Kako nemamo promjenu tlaka, uslijed porasta temperature kao posljedica izgaranja raste i specifični volumen dimnih plinova. Dakako da u praksi postoji mali pad tlaka tijekom izgaranja zbog trenja. Zbog toga termodinamičko stanje dimnih plinova nakon izgaranja nije p3, T3 već p3', T3' (p3' < p3, T3' < T3). Nakon izgaranja dimni plinovi ekspandiraju kroz turbinske lopatice te daju okretni moment vratilu turbine. Time se toplinska energija pretvara u mehaničku. Mehanička energija se koristi za pokretanje generatora za proizvodnju električne energije (slika 4). Međutim, i dio mehaničke energije dobivene od turbine se koristi za pogon kompresora. Ekspanzija dimnih plinova iz stanja p3', T3' do p4, T4 bi u idealnim uvjetima bila izentropska. Ali zbog postojećeg trenja je temperatura na izlazu T4' (T4' > T4). Kod kompresije i ekspanzije fluida u kompresoru i turbini, promjena stanja se ne odvija izentrospki već politropski. [4] Kod pokretanja plinsko-turbinskog postrojenja potrebno je najprije omogućiti rad kompresora. Za to se koristiti se Diesel motor ili elektromotor, dok tijekom rada plinske turbine kompresor dobiva mehaničku snagu od turbine. [5]
Kompresor
Klasični kompresori javljaju se kod plinsko-turbinskih postrojenja, mlaznih motora i sl. Kompresori mogu biti radijalni ili aksijalni. Kod aksijalnih strujanje zraka vrši se u smjeru vratila, dok kod radijalnih kompresora imamo radijalno strujanje na rotorsko kolo. Radijalni kompresori lakši su i mnogo efikasniji, nego aksijalni kompresori, ali za manje kompresijske omjere. Kod većih postrojenja koriste se aksijalni kompresori (Slika 5) obzirom da su efikasniji (za veće kompresijske omjere).
Aksijalni kompresor
- Način Rada
Aksijalni kompresor se sastoji od tri glavna dijela:
1. Rotirajući disk
2. Nepokretne statorske lopatice
3. Kućište
Lopatice određenog aerodinamičkog oblika su ugrađene na rotirajuće diskove aksijalnih kompresora (slika 5). Profil ugrađenih lopatica je sličan aeroprofilu krila (slika 6). Pomoću suženog kućišta te rotirajućih diskova, radni medij se prolaskom kroz kompresor kontinuirano sabija. Statorske lopatice aksijalnog kompresora služe za usmjeravanja fluida sa jednog rotirajućeg diska prema drugom. Stoga je između svakog para rotirajućih diskova ugrađen nepokretni statorski disk (Slika 5). Kako se fluid kontinuirano tlači od ulaza do izlaza iz aksijalnog kompresora tako se njegov tlak i brzina povećava. [8]
Centrifugalni kompresori
- Način Rada
Centrifugalni kompresor se sastoji od četiri glavna dijela:
1. Rotor
2. Difuzor
3. Kućište
4. Regulacija pomoću podesivih lopatica
Centrifugalni kompresor može biti pogonjen elektromotorom, parnom turbinom, motorom sa unutarnjim izgaranjem, ili plinskom turbinom. Rotor kompresora rotira sa zakrivljenim lopaticama na velikim brzinama vrtnje. Kako on rotira, tako i usisava fluid kroz sredinu kompresora te ga pomoću centrifugalne sile tjera prema vanjskim rubovima rotora. Tamo radni medij ulazi u difuzor. Rotor centrifugalnog kompresora predaje svoju rotacionalnu energiju fluidu te mu time znatno povećava izlaznu brzine, ali ne i statički tlak. Statički tlak se povećava prolaskom fluida kroz difuzor. U difuzoru se brzina fluida smanjuje, te se ta kinetička energija pretvara u energiju tlaka. Ova činjenica se može dokazati pomoću Bernoullijeve jednadžbe (slika 7). Zbog toga je i statički tlak i brzina fluida na izlazu iz difuzora veća nego na ulazu u centrifugalni kompresor na samom početku procesa. Na izlazu iz difuzora je fluid pomoću kućišta usmjeren prema izlazu iz centrifugalnog kompresora. Protok komprimiranog fluida se regulira pomoću podesivih lopatica. Veći kompresori su građeni kao više stupnjevani što znači da imaju dva ili više rotora. [11]
- Primjena
Primjena centrifugalnih kompresora je velika. Centrifugalni kompresori se primjenjuju u automobilskoj industriji, u Dieselovim motorima za turbopuhala, za transport prirodnog plina, u naftnim rafinerijama, petrokemijskim i kemijskim postrojenjima, u klimatizaciji i hlađenju. [13]
Komora izgaranja
Komora izgaranja je dio plinsko-turbinskog postrojenja u kojem se kemijska energija goriva oslobađa u obliku topline. Izgaranjem gorivo i fluida (najčešće zrak) stvaraju se dimni plinovi i do 1950°C. Sa velikom brzinom i temperaturom kao takvi ulaze u turbinu gdje ekspandiraju. Prije nego što zrak uđe u komoru izgaranja njegova mu se brzina smanjuje sa 150 m/s (pri izlasku iz kompresora) na 25 m/s putem difuzora koji je smješten na ulazu komore. Smanjenjem brzine fluida omogućujemo stabilno izgaranje. Sastav gorive smjese je također jedan od faktora koji utječe na stabilnost izgaranja. Omjer zraka i goriva u plinsko-turbinskim postrojenjima je 50/1. Kako je taj omjer tri puta veći od stehiometrijskog, dovođenjem takve smjese u komoru za izgaranje bi se onemogućilo stabilno izgaranje. Stoga se ovaj problem rješava tako da se u tzv. primarnoj zoni izgaranja dovede samo 20% više zraka od stehiometrijskog iznosa. [14]
Inženjeri koji projektiraju turbinu moraju osigurati da se izgaranje odvija upravo u komori za izgaranje, a ne blizu same turbine, tako da se turbinske lopatice ne bi oštetile. Treba osigurati uniformni izlazni temperaturni profil tako da sama turbina ne bi bila podvrgnuta toplinskom naprezanju. U unutrašnjosti komore treba spriječiti postojanje ekstremno vrućih mjesta tako da se komora ne ošteti. Poželjno je da komora za izgaranje u plinskoj turbini ima široko područje rada. Široko područje rada omogućuje da se izgaranje uspješno odvija neovisno o mijenjanju ulaznog tlaka, temperature, ili masenog protoka. [15]
Plinska turbina
Proizvodi izgaranja prisilno ulaze u turbinu, s velikom brzinom i protokom, gdje se preko mlaznica usmjeruje na lopatice, koje se okreću, a ispušni plinovi izlaze sa smanjenom temperaturom i tlakom. [17]
Kao i kod svih toplinskih strojeva, veća temperatura izgaranja će omogućiti veći stupanj termičkog iskorištenja. Ipak, temperature su ograničene sa mogućnostima čelika, nikla, keramike i ostalih materijala da se odupru temperaturama i naprezanjima. Zbog toga, lopatice turbine imaju često veoma složen postupak hlađenja. [19]. Unutarnja iskoristivost turbina se kreće između 0,89 i 0,94. [20]
Regulacija plinskih turbina
Snaga plinskih turbina koje rade kao otvoreni sustav se mogu regulirati na dva načina:
1. Temperaturna regulacija
2. Kombinirana temperaturna i količinska regulacija
Mijenjanje snage turbine putem temperaturne regulacije se provodi promjenom ulazne temperature fluida u turbinu. Uz konstantan maseni protok, te snagu kompresora, ulazna temperatura fluida se može regulirati promjenom količine goriva za izgaranje. Ovakva vrsta regulacije se može koristiti kod manjih i kratkotrajnih promjena snage turbina, dok je ne-ekonomična kod većih promjena snage. [21]
Kombinirana temperaturna i količinska regulacija je također jedna od mogućih načina mijenjanja snage turbine. Naime, ovdje se radi o istovremenoj promjeni količine usisanog fluida regulacijom podesivih lopatica na kompresoru te o promjeni količine ubrizganog goriva u komoru izgaranja. Ova istovremena regulacija je moguća do otprilike 40%-tnog opterećenja turbine. Daljnje smanjenje snage se može samo vršiti smanjenjem količine ubrizganog goriva jer je kompresor ušao u područje nestabilnog rada. [22]
Parno-turbinsko postrojenje
Klasično parno-turbinsko postrojenje zasniva se na Rankinovom procesu (11), poznatom iz termodinamike. Temelj većine parno-turbinskih postrojenja (termoelektrana) jest postrojenja sa slike 10.. Generator pare, turbina, generator električne energije, kondenzator, kondenzatorska pumpa, napojna pumpa i spremnik napojne vode.
Naravno postoje tu još mnogi dijelovi termoenergetskog postrojenja o kojima ćemo reći nešto više: pregrijači pare, međupregrijači, ekonomajzeri i sl (kao sastavni dio generatora pare).
Generator pare
Za generator pare mogli bismo reći da čini središnji dio svake termoelektrane. Ukratko generator pare, što mu i samo ime kaže, služi za proizvodnju pare s određenim parametrima (temperature i tlaka) koja će se kasnije u turbini iskoristiti za proizvodnju električne energije.Generatore pare možemo ugrubo podijeliti na:
- čelične generatore pare
- lijevane
- generatore pare posebne namjene
U našem razmatranju osvrnuti ćemo se samo na čelične generatore pare s obzirom da su oni najzastupljeniji i najčešći u primjeni. Čelične generatore pare možemo još podijeliti na par podvrsta:
- vatrocjevni
- vodocjevni
- cilindrični
Vartocjevni generatori pare funkcioniraju tako da plamen struji kroz cijevi i tako grije vodu koja te cijevi okružuje. Mi se nećemo baviti vatrocijevnim generatorima pare, nego vodocijevnim generatorima pare kao najčešćim i najbrojnijim te nama najzanimljivijima s aspekta termoelektrana. Kao što i samo ime kaže kod vodocjevnih generatora pare voda ili para nalaze se u samim cijevima. Na taj način moguće je postići znatno veće tlakove i temperature nego kod vatrocjevnih generatora pare. Vodocjevne generatore pare opet možemo podijeliti na:
- horizontalne s ravnim cijevima
- vertikalne sa savinutim cijevima (prirodna ili prisilna cirkulacija)
Vertikalni generatori pare sa savinutim cijevima predstavljaju najveću i nama najvažniju skupinu. Ovakvi tipovi generatora pare se nalaze u velikim termoenergetskim postrojenjima za proizvodnju električne energije. Za izgaranje mogu koristiti sve vrste goriva: kruto gorivo na rešetci (ravnoj ili kosoj), kruto gorivo u fluidiziranom sloju te izgaranje u prostoru (ugljena prašina, tekuće i plinsko gorivo). Prirodna cirkulacija u generatoru pare ostvaruje se zbog razlike u gustoćama vode i vodene pare. Silazne cijevi upravo zbog toga nisu grijane tako da se lakše uspostavi cirkulacija. Temelji hidrodinamike, toplija voda će strujati prema gore dok će se hladna voda kretati prema dolje. Kada ne možemo osigurati uvijete za prirodnu cirkulaciju koristimo različite pumpe kako bismo osigurali nesmetanu cirkulaciju (La Mont generatori pare).
Postoje postupci i dijelovi koji se ugrađuju u generator pare kako bismo osigurali veću iskoristivost i povećanje snage. Ovo su neki od njih:
Pregrijač pare
Kako bismo povećali stupanj iskoristivosti čitavog procesa koristimo pregrijanu paru. To ima utjecaj i na samu tehnologiju izrade s obzirom da para nema kapljica vode u sebi pa je manje korozivna i erozivna. Kod današnjih termoelektrana pregrijana para je imperativ zbog strog određenih zahtjeva za parametre pare na ulazu u turbinu.
Prijelaz topline može biti konventivan ili putem zračenja. U praksi se uvijek koristi mješavina ova dva navedena.
Međupregrijači
Kod ugradnje međupregrijača moramo imati na raspolaganju i turbinu podijeljenu na visokotlačni i niskotlačni dio. Para ekspandira u visokotlačnom dijelu turbine do tlaka međupregrijanja te se nakon toga vraća u generator pare. U generatoru pare se još jednom zagrijava, najčešće ponovno na temperaturu svježe pare, te se odvodi u niskotlačni dio turbine. Tu para ponovno ekspandira stvarajući koristan rad.
Kao i kod pregrijača , kod ugradnje međupregrijača povećava se ukupan stupanj iskoristivosti postrojenja. Smanjujemo vlažnost pare što je izuzetno bitno za dugovječnost turbine. Smanjujemo veličinu kondenzatora, gorionika i samog generatora pare. Negativna strana je povećanje cijene turbine,ali i povećanje ukupnih investicijskih troškova.
Ekonomajzerske površine
Ekonomajzerske površine smještaju se u stražnji dio generatora pare tako da se iskorištava dio topline koja bi se inače ispustila u okoliš. Time ujedno i smanjujemo temperaturu dimnih plinova. Na ekonomajzerskim površinama zagrijavamo napojnu vodu i zrak. U zagrijačima napojne vode treba paziti na koju temperaturu se medij zagrijava obzirom da prelaskom temperature zasićenja može doći do oštećenja. Za svoj rad zagrijači vode troše relativno malo energije te zauzimaju malo prostora. Ukoliko imamo zagrijače vode brže ćemo pustiti generator pare u pogon te ćemo smanjiti opterećenje ogrjevnih površina.
Zagrijači zraka
Zagrijači zraka smješteni su iza zagrijača napojne vode te su posljednji u generatoru pare. Pošto rade na manjim tlakovima ,za razliku od zagrijača vode, manji su svojom konstrukcijom. Zrak zagrijavamo zbog podizanja stupnja iskoristivosti, sušenja goriva i poboljšanja izgaranja. Većina zagrijača zraka su rotacioni (Ljungstrom) (Slika 14) zagrijači, saćasto konstruirani te grijani dimnim plinovima, a hlađeni zrakom.
Kondenzator
Kondenzator je klasični izmjenjivač topline koji „vraća“ paru natrag u tekuće stanje, nakon što ekspandira u turbini. Kondenzat se pumpama vraća natrag u proces. Tlak u klasičnom kondenzatoru je izuzetno mali (potlak – oko 0,045 bara). Pošto je kondenzator izmjenjivač topline potrebno je osigurati i medij kojem će se ta topline predati kako bi se para ohladila do temperature kondenzata. Upravo zbog toga su termoelektrane smještene na rijekama, moru i sl. kako bi se osigurao medij koji će preuzimati svu tu toplini. Naravno postoji mogućnost da termoelektrana radi dvofazno, odnosno kao i toplana. Tada se ta para može odvoditi vrelovodima i služiti kao grijanje.
Kombinirani procesi
Kada govorimo o kombiniranom procesu mislimo na proces sastavljen od plinsko-turbinskog i parno-turbinskog dijela. Glavne sastavnice su naravno plinska i parna turbina. Osnovna namjena ovakvih postrojanje je da se iskoristi toplina nastala na izlazu iz plinske turbine. Pošto ispušni plinovi koji izlaze iz plinske turbine imaju izuzetno visoke temperature, oko 600 °C mogu se iskoristiti kao sredstvo koje će grijati vodu i proizvoditi vodenu paru za parnu turbinu. Time povećavamo iskoristivost samog procesa pošto je toplina koju bi inače izgubili iskorištena za daljnju proizvodnju pare. Iskoristivost takvog postrojenja doseže i do 60%. Na Slici 15. prikazano je jedno takvo postrojenje s plinskom i parnom turbinom te kompresorom. U kombiniranom postrojenju kompresor komprimira zrak i šalje ga u komoru izgaranja gdje se istovremeno dovodi gorivo za izgaranje. Plinovi izgaranja vrlo visoke temperature vode se iz komore izgaranja u plinsku turbinu, gdje ekspandiraju dajući koristan rad na vratilu spojenom na rotor plinske turbine. Vratilo pokreće generator električne struje i proizvodi električnu energiju koja se šalje u mrežu. Nakon ekspanzije, ispušni se plinovi iz plinske turbine vode u utilizator (generator pare na otpadnu toplinu). Jedna od vrlo dobrih karakteristika plinske turbine je ta što je kod nje prisutan vrlo visok omjer zrak/gorivo budući se dodaje nekoliko puta više zraka zbog hlađenja lopatica plinske turbine.
Zbog toga na izlazu iz plinske turbine ostaje još dosta neiskorištenog zraka, te se taj višak zraka koristi za izgaranje dodatnog goriva u utilizatoru. U utilizatoru se napojna voda zagrijava do isparavanja i pregrijava na zadane parametre. Pregrijana para odlazi iz generatora pare u parnu turbinu gdje ekspandira i predaje mehanički rad generatoru električne struje. Nakon toga para, sada već niskih parametara, odlazi u kondenzator gdje kondenzira. Nakon kondenzacije, voda se napojnom pumpom vraća u utilizator na ponovno zagrijavanje.
Već je napomenuto da ovim principom povećavamo iskoristivost čitavog procesa. Razlog pronalazimo u osnovama termodinamike. Temelje možemo vidjeti u bazičnom Carnotovom procesu (izentropsko-izotermnom) (Slika 17). Princip je sljedeći: ukoliko su temperaturne razlike manje, manji je i prijenos topline. Dakle nama je od izuzetne važnosti da je ta razlika temperatura „ spremnika“ što veća. Naravno idealni slučaj bi bio ukoliko bi temperatura radne tvari kod dovođenja topline bila jednaka temperaturi ogrjevnog spremnika, a temperatura radne tvari kod odvođenja postane jednaka temperaturi rashladnog spremnika. Tada govorimo o idealnom Carnotovom procesu. Znamo da kod Carnotovog procesa iskoristivost ovisi samo o temperaturi, odnosno temperaturi toplinskih spremnika te se nikakvim drugim varijablama ta iskoristivost ne može promijeniti.
Stupanj korisnosti kombiniranog postrojenja može se definirati kao omjer ukupne električne snage i toplinske snage dovedene u proces:
- gdje je:
- Ppl – električna snaga plinske turbine
- Ppa – električna snaga parne turbine
- Qpl – dovedena toplinska snaga u plinskom procesu
- Qpa – dovedna toplinska snaga za dogrijavanje parnog procesa
Izraz (1) naziva bruto korisnost kombi procesa zato što nije uzeta u obzir potrošnja snage na pomoćne sustave postrojenja (Pps) i nisu uzeti u obzir električni gubici.
Ako potrošnju snage na pomoćne sustave uzmemo u obzir tada dobivamo neto korisnost kombi procesa koja se definira kao:
Uz povećani stupanj iskoristivosti koji dobivamo kod kombiniranih postrojenja možemo istaknuti još neke prednosti:
Treba istaknuti ekološki aspekt ovog postrojenja jer je ovdje jedino gorivo prirodni plin. Samim time nema emisije sumpornog oksida, a emisija NOx je manja. Sustav izgaranja je mnogo napredniji te se ponekad i koristi ubrizgavanje pare u komoru izgaranja te se postiže sniženje temperature izgaranja. Isto tako produkcija CO2 je manja s obzirom na niži postotak ugljika u prirodnim plinu.No kao problem javlja se (ne)mogućnost opskrbe plinom što bi, konkretno, u Hrvatskoj moglo ponekad predstavljati problem.Da spomenemo još i kraći rok projektiranja i izgradnje te veća fleksibilnost kod rada i samog pokretanja. Troškovi održavanja su niži nego u klasičnih termoelektrana te su samim time niži i ukupni troškovi proizvodnje struje.Što se budućih trendova na tržištu energenata tiče stvar je prilično jasna. Sve veća potreba za električnom energijom će dovesti i do povećane izgradnje termoelektrana s obzirom da su upravo termoelektrane najveći svjetski proizvođači električne energije. Naravno trenutna situacije je da se većina te električne energije proizvodi u elektranama na ugljen, no s obzirom na trendove očekuje se znatno povećanje udjela termoelektrana na plin, a samim time i kombiniranih postrojenja. Plinska turbina sa zadatkom proizvodnje električne energije javlja se krajem 1930-tih godina, no razvoj se zaustavlja u periodu II. svjetskog rata budući se u to vrijeme sva pozornost posvetila propulziji mlaznih motora. Prvo plinskoturbinsko postrojenje bilo je instalirano u elektroenergetskom sustavu SAD 1949. godine, a bilo je u sastavu kombi-procesa. Tek 60-tih godina imamo prve turbine za proizvodnju električne energije u većem broju elektrana. Prednost je bila mogućnost brzog starta. U 70-tim godinama dolazi do nagliog razvoja u izgradnji kombi-procesa u elektroenergetskim sustavima, kada je proizvodnja plinsko-turbinskih postrojenja dostigla snagu veću od 50 MW i početne temperature veće od 850°C. S pojavom plinskoturbinskog postrojenja snaga većih od 150 MW i početne temperature veće od 1100 °C došlo je do intenzivnijeg razvoja izgradnje kombi-procesa za proizvodnju električne energije i kombiniranu proizvodnju toplinske i električne energije.
Termoelektrane na ugljen i plin
Ove termoelektrane koriste fosilna goriva za izgaranje te pretvaraju dobivenu toplinsku energiju u mehaničku te se tako pokreće električni generator i stvara se električna energija. Termoelektrane na fosilna goriva (ugljen, plin i petrolej) se konstruiraju u velikim razmjerima za kontinuirani rad, pa tako upravo ove termoelektrane u velikom broju država osiguravaju najveći dio dobivanja električne energije.
Nusprodukti termoelektrane se moraju uzeti u obzir pri konstruiranju i u samom radu. Otpadna toplina nastala iz toplinskog ciklusa se mora pustiti u atmosferu zbog konačne efikasnosti sustava, često korištenjem rashladnog tornja, rijeke ili jezera kao rashladnog sredstva (pogotovo za kondenziranu paru). Dimni plinovi nastali izgaranjem fosilnih goriva sadrže ugljični dioksid, vodenu paru, i još neke tvari kao dušik, sumporne okside, azotast okside i u slučaju termoelektrane na ugljen još pepeo i živu. Čvrsti otpad pepela iz kotlova na ugljen se mora ukloniti iako se jedan dio pepela može reciklirati i koristiti kao građevinski materijal.
Termoelektrane na ugljen,plin i petrolej emitiraju velike količine stakleničih plinova u atmosferu i neke ih znanstvaene organizacije smatraju velikim "krivcima" globalnog zatopljenja u zadnjih 100 godina. Mrki ugljen emitira tri puta više stakleničkih plinova nego prirodni plin, a crni ugljen 2 puta više. Postoje nastojanja da se počne koristiti hvatanje i skladištenje tih plinova al se ne očekuje da će bit u komercijalno i ekonomski dostupan prije 2020. godine, ako i tad.
Hvatanje i skladištenje ugljika
"Carbon capture and storage" CCS je teorijski pristup hvatanja i skladištenja ugljikovog dioksida sa svrhom smanjivanja emisija stakleničih plinova u atmosferu. Temelji se na skladištenju ugljikovog dioksida iz velikih izvora kao što su termoelektrane na fosilna goriva. Također bi se moglo koristiti i za "čišćenje" zraka od ugljičnog dioksida te bi se tako mogao trajno uskladištiti daleko od atmosfere i na taj način smanjiti utjecaje globalnog zatopljenja.
Iako se CO2 ubrizgavao u geološku formaciju za razne namjene njegovo skladištenje je još neiskušan koncept. Prva integrirana elektrana za skladištenje CO2 je stavljena u rad u rujnu 2008. godine u istočnoj Njemačkoj elektrani "Schwarze Pumpe" u nadi da se dobiju neki odgovori o tehnološkoj izvedivosti i ekonomskoj efikasnosti.
Utvrđeno je da bi se primjenom ovog sustava na moderne konvencionalne elektrane mogla smanjiti emisija CO2 u atmosferu mogla smanjiti za 80-90% u odnosu na elektrane bez ovog sustava. Procjenjeno je i da se ekonomski potencijal ovog sustava kreće između 10-50%. Hvatanje i skladištenje CO2 zahtijeva mnogo energije pa bi se potrebe za gorivom kod termoelektrane na ugljen povećalo za 25-40%. Ovakvi i drugi sustavi bi utjecali na povećavanje troškova energije u iznosu od 21-90%.
Zamišljeno je da bi se CO2 mogao skladištiti u dubokim geološkim formacijama, u dubokim oceanskim masama ili u obliku mineralnih karbonata. U slučaju pohranjivanja u dubokim oceanima povećava se rizik od okiseljavanja oceana koji također potječe od viška ugljičnog dioksida u atmosferi i oceanu. Skladištenje u geološke formacije se trenutno čini najboljim rješenjem. "National Energy Technology Laboratory" (NETL) je izvjestio da Sjeverna Amerika ima dovoljan kapacitet skladišta u svojoj sadašnjoj stopi proizvodnje za više od 900. godina. Generalni problem su dugoročne prognoze o podzemnim skladištima te njihova sigurnost jer su one još vrlo teške i neizvjesne jer bi se moglo dogoditi da CO2 procuri iz skladišta u atmosferu.
Potencijalno koristan način na koji bi se CO2 mogao koristiti u industriji je njegovo pretvaranje u ugljikovodik gdje bi se mogao ponovno koristiti kao gorivo ili pri izradi plastike. Postoje brojni projekti koji istražuju tu mogućnost zbog toga što trenutno biogoriva predstavljaju drugi potencijalno oblik "ugljik-neutralnih" mlaznih goriva.
Termoelektrane u Hrvatskoj
Uvod
- Instalirani kapaciteti za proizvodnju električne energije u Republici Hrvatskoj obuhvaćaju hidro i termoelektrane u sastavu HEP grupe (oko 95% kapaciteta), određeni broj industrijskih termoelektrana i nekoliko elektrana na obnovljive izvore energije u privatnom vlasništvu.
- U vlasništvu HEP-a je sedam termoelektrana, s tim da su TE Sisak, TE Rijeka, TE Plomin 1 i KTE Jertovec kondenzacijske za proizvodnju električne energije, a TE-TO Zagreb, EL-TO Zagreb i TE-TO Osijek su termoelektrane toplane u kojima se u spojenom procesu proizvodi električna i toplinska energija. Kao pogonsko gorivo koriste loživo ulje, prirodni plin i ugljen.
- HEP je vlasnik 50 postotnog dijela drugog bloka TE Plomin 2, a temeljem vlasništva polovice NE Krško, hrvatskom elektroenergetskom sustavu raspoloživo je na pragu 338 MW. Ukupna raspoloživa snaga elektrana u sastavu HEP grupe na teritoriju Republike Hrvatske je 3 817,76 MW (uračunata TE Plomin 2, bez NE Krško d.o.o.). Od toga je 1 681 MW u termoelektranama (uračunata TE Plomin 2, bez NE Krško d.o.o).
- U 2012. godini ukupno je u elektranama HEP Proizvodnje d.o.o. proizvedeno 8.100 GWh električne energije (u hidroelektranama 4.773 GWh ili 58,9%, a u termoelektranama 3.327 GWh ili 41,1%. Time je vlastitim izvorima pokriveno 42,35% ukupnih potreba za električnom energijom Republike Hrvatske. U odnosu na planiranu proizvodnju za 2012. godinu ostvarena je manja ukupna proizvodnja za 1,94%, pri čemu je proizvodnja hidroelektrana povećana 4,9%, a proizvodnja termoelektrana smanjena 10,3%.
- Osim proizvodnje ostvarene u objektima u isključivim vlasništvu HEP-a, ostvarena je proizvodnja i u TE Plomin d.o.o. Za vođenje i održavanje TE Plomin 2, RWE Power (od 01.01.2011. RWE East) i HEP Proizvodnja d.o.o. osnovali su društvo TE Plomin d.o.o. (udio vlasništva 50:50 posto). U TE Plomin d.o.o u 2012. godini proizvedeno je 1.372 GWh električne energije, što je u odnosu na proizvodnju porast od 11 %. U 2012. godini, ukupno je u elektranama HEP Proizvodnje i TE Plomin d.o.o. proizvedeno 9.472 GWh što je pad od 3% u odnosu na 2011 kada je proizvedeno 9.725 GWh električne energije.
Termoelektrane
1. TE Sisak
- U TE Sisak 2009. godine započela je izgradnja plinskog kombi kogeneracijskog postrojenja BLOK C 230 MWe + 50 MWt. Očekivano puštanje u pogon novog postrojenja je početkom 2013. godine. Novo postrojenje sastoji se od jedne plinske turbine snage 160 MWe sa vlastitim generatorom, jedne parne turbine snage 80 MWe sa generatorom i kotla utilizatotra na otpadne plinove iz plinske turbine. Parna turbina ima regulirano oduzimanje pare za potrebe napajanja parom toplinskog sustava grada Siska snage 50 MWt.
- Opći podaci:
- položaj: Sisak, Čret, četiri kilometra nizvodno od Siska na desnoj obali Save
- tip : kondenzacijska termoelektrana s dva bloka - svaki blok ima dva parna kotla (2x330 t/h, 540°C, 135bara) i po jednu parnu turbinu sa generatorom (210MW na generatoru, 198 MW na pragu)
- vrsta goriva: teško lož ulje, prirodni plin ili kombinirano
- ukupna snaga: 420 MW (2x210 MW) GENERATOR, 396 MW (2x198 MW) PRAG
- vrste proizvoda: električna energija, tehnološka para
- Opći podaci:
- položaj: jugoistočno od Rijeke, na morskoj obali
- tip: regulacijska kondenzacijska, kotao i jedna parna turbina
- vrsta goriva: teško loživo ulje
- ukupna snaga: 320 MW
- vrste proizvoda: električna energija
- godina izgradnje: 1974.-1978.
- Termoelektrana Plomin je termoelektrana pored Plomina. Sastoji se od TE Plomin 1 (sagrađene 1969.) i TE Plomin 2 (sagrađene 2000.). To je kondenzacijska termoelektrana s dva bloka, te svaki ima kotao i po jednu parnu turbinu. Pogonsko gorivo je ugljen. Ukupna snaga termoelektrane iznosi oko 330 MW, te prema podacima iz 2007. proizvodi 2 187 GWh električne energije (Plomin 1 786, a Plomin 2 1 401). S visinom od 340 metara, dimnjak TE Plomin najviša je građevina u Hrvatskoj.
- Opći podaci:
- položaj: Luka Plomin
- naziv: TE Plomin: TE Plomin 1 i TE Plomin 2
- tip elektrane: kondenzacijska termoelektrana s dva bloka: svaki ima kotao i po jednu parnu turbinu
- vrsta goriva: ugljen
- ukupna snaga: 330 MW
- vrste proizvoda: električna energija
- Opći podaci:
- položaj: Konjščina, Jertovec
- naziv elektrane: kombinirana (plinsko-parna) termoelektrana Jertovec
- tip: interventna (vršna)
- vrsta goriva: prirodni plin, ekstra lako ulje za loženje
- ukupna snaga: 88 MW
- vrste proizvoda: električna energija i usluge sustava
- Pogon TE-TO Zagreb nalazi se na teritoriju Grada Zagreba. Smješten je na lijevoj obali Save, u istočnom dijelu grada Zagreba, južno od industrijske zone Žitnjak. Područje u promjeru 20 km od lokacije uključuje gradski teritorij Zagreba, područje grada Velike Gorice, općinu Sv. Nedjelje, krajnji istočni dio administrativnog područja grada Samobora, veći dio grada Zaprešića, južne dijelove grada Sv. Ivan Zelina, gradove Sesvete i Dugo Selo te područje općine Rugvica.
- Termoelektrana-toplana Zagreb dobila je u veljači 2006. godine međunarodno priznati certifikat ISO 14001:2004, što predstavlja potvrdu da je uvedeni sustav upravljanja okolišem u potpunosti usuglašen sa svim zahtjevima norme, prihvaćenom politikom upravljanja okolišem te sa zakonskim i ostalim zahtjevima koje je Pogon TE-TO Zagreb obvezan primjenjivati.
- Opći podaci:
- položaj: Zagreb, Žitnjak
- tip: kogeneracija električne i toplinske energije
- vrsta goriva:
- g1: prirodni plin
- g2: ekstra lako loživo ulje
- g3: teško loživo ulje
- ukupna snaga: 440 MWe / 850 MW t
- proizvod: električna i toplinska energija
- Pogon TE-TO Osijek nalazi se u istočnoj industrijskoj zoni grada Osijeka, u blizini velikih toplinskih i električnih potrošača. Pogon je smješten na periferiji grada, na udaljenosti oko 1 km od rijeke Drave i oko 5,5 km od centra grada i zauzima površinu od oko 12 ha. Najbliži stambeni objekti su udaljeni oko 200 metara od postrojenja.
- Opći podaci:
- položaj: Osijek
- tip: kogeneracijska
- proizvodnja: električne i toplinske energije
- vrsta goriva:
- g1: prirodni plin / l.ulje
- g2: teško lož ulje / plin
- ukupna snaga: 89 MWe / 139 MW t +50 t/h
- Opći podaci:
- položaj: Zagreb, Trešnjevka
- tip: kogeneracijska
- proizvodnja: električne i toplinske energije
- vrsta goriva:
- g1: prirodni plin
- g2: teško lož ulje
- ukupne snaga: 88.8 MWe / 439 MW t + 160 t/h
- http://www.mzoip.hr/doc/zastita_okolisa/izvjesce_22_11_2010_1.pdf
- http://en.wikipedia.org/wiki/TE_Rijeka
- http://www.hep.hr/proizvodnja/osnovni/default.aspx
- http://www.hep.hr/proizvodnja/onama/default.aspx
- http://www.hep.hr/proizvodnja/osnovni/termoelektrane
- http://setis.ec.europa.eu/about-setis/technology-map/2011_Technology_Map1.pdf/view
- http://www.eihp.hr/hrvatski/projekti/EUH_od_45/EUH11web.pdf
- http://www.mzoip.hr/doc/zastita_okolisa/izvjesce_22_11_2010_4.pdf
- http://www.mzoip.hr/doc/Zastita_okolisa/Izvjesce_19_06_2012_5.pdf
Zaštita okoliša
Kod termoelektrana (klasičnih-hlađenih) dva su osnovna učinka koji utječu na onečišćenje okoliša. Prvi i osnovni je učinak koji nastaje zbog izgaranja fosilnih goriva. Drugi i manje bitni jest toplinsko onečišćenje rijeka ili jezera. Mi ćemo se o ovom poglavlju baviti samo ovim prvim, odnosno onečišćenjem usljed izgaranja fosilnog goriva. Izgaranje je proces u kojem se kemijska energija sadržana u gorivu transformira u unutrašnju energiju koja se opet dalje iskorištava u raznim procesima. Kod izgaranja u atmosferu se ispuštaju plinovi kao što su CO2, CO, voda, NOx, SO2, različiti ugljikovodici (CmHn). Od svih navedenih ugljik dioksid (CO2) i voda (H2O) nisu direktno otrovni za ljude. No oni izravno utječu svojom koncentracijom na zagrijavanje atmosfere (apsorpcija toplinskog zračenja u atmosferi). Vrsta i sastav plinova nastalih uslijed izgaranja ovisi o sastavu goriva koje izgara u procesu. Elementi koji čine većinu fosilnih goriva su ugljik, vodik i sumpor. Ugljik može izgara potpuno i djelomično. U potpunom izgaranju imamo CO2 kao produkt dok kod djelomičnog izgaranja kao produkt imamo CO. Upravo zbog toga veći udio CO imamo u termoelektranama na ugljen jer je teže osigurati kvalitetno miješanje goriva i zraka. Izgaranjem vodika dobivamo vodu, a izgaranjem sumpora SO2. Kod izgaranja težimo što potpunijem izgaranju. Da bismo to ostvarili cilj je imati što bolje miješanje zraka i goriva. Naravno da je to najjednostavnije ostvariti kod plinskih goriva, a najteže kod krutog. Za izgaranje potrebno je osigurati minimalnu količinu zraka, no u realnom procesu uvijek imamo određeni pretičak zraka. Loša strana pretička zraka jest činjenica da povećanjem pretička zraka smanjujemo stupanj djelovanja zbog povećanja vrelih plinova koji napuštaju sustav. O količini sumpora u produktima izgaranja najviše ovisi udio sumpora u samom gorivu. Dakle težimo ugljenu i nafti sa što manje sumpora. Kod dušika i njegovih oksida gorivo ne utječe toliko na produkciju NOx-a. Isto tako treba spomenuti i izuzetno veliku količinu pepela kojeg jedna prosječna termoelektrana izbaci u okoliš. U svrhu zaštite okoliša u posljednjih desetak godina donijelo se mnoštvo zakona odredaba koje bi trebale pridonijeti smanjenju zagađenja okoliša iz termoelektrana. Jedan od glavnih parametara je kontrola i smanjenje sumpornih oksida. Postupak odsumporavanja može se vršiti tako da se odvaja već iz goriva ili iz produkata izgaranja. Veći efekt se postiže ukoliko sumporove okside uklanjamo iz produkata izgaranja. Ovakvi postupci zahtijevaju dodatna ulaganja koja poskupljuju i krajnju cijenu električne energije. Dušikove spojeve je najjednostavnije reducirati stupnjevanim izgaranjem. Na taj način možemo smanjiti emisiju dušičnih oksida za oko 50%.
Kretanja fosilnih goriva u svjetskoj energetici
Potrošnja energije
Svjetska potrošnja energije odnosi se na ukupnu energiju koju troši cjelokupna ljudska civilizacija. Provedena godišnja mjerenja uključuju svu energiju, korištenu iz svakog energetskog izvora kojeg crpimo. Potrošnja energije društva je pokazatelj njegove razvijenosti jer je duboko povezana sa socijalnom, ekonomskom kao i političkom sferom društva. Institucije kao International Energy Agency (IEA)[40], američki Energy Information Administration [41] i European Enviroment Agency (EEA) [42] periodički snimaju i bilježe podatke o potrošnji energije kako bi imali uvid u njezina kretanja. Kvalitetni podaci nam vjerno prikazuju sistemske trendove i uzorke, a bolje razumijevanje svjetske potrošnje energije je nužno za izradu strategije energetskog razvoja.
Prikaz godišnje potrošnje energije u ekvivalentnim kilogramima nafte (kgoe) po stanovniku po zemlji, prema podacima iz 2001. godine; Tamnija područja pokazju veću potrošnju, zelena područja pokazuju padajući trend potrošnje u razdoblju od 1990. do 2001. godine
http://i44.tinypic.com/2hmlezb.png
http://i42.tinypic.com/2s6nfb8.jpg
http://i44.tinypic.com/raqj2q.jpg
Prikaz godišnje potrošnje po glavi stanovnika. Potrošna je izražena u Btu (British thermal unit).
1 Btu = 1055 J
Trendovi
Fosilna goriva su najveći skok u potrošnji doživjela u razdoblju između 2000. i 2008. godine. IEA je u listopadu 2012. godine zabilježila kako je ugljen sa 50% sudjelovao kao energent za rast proizvodnje energije u posljednjem desetljeću. Nagli rast u G20 je smanjen na 2% u 2011. godini što je direktni utjecaj globalne krize. Posljednjih nekoliko godina zahtjevi za energentima su okarakterizirani brzorastućim kineskim i indijskim tržištem, dok se razvijene zemlje bore sa ekonomskom stagnacijom i visokim cijenama nafte koje rezultiraju konstantnim ili padajućim trendovima u potrošnji energije. Prema podacima IEA od 1990. do 2008. godine, potrošnja energije po osobi je porasla za 10%, dok je ukupna ljudska populacija povećana za 27% u istom razdoblju. Ukupna svjetska potrošnja energije 2008. godine je bila 132 000 tWh/god. Od tog broja, 37% proizvede se u termoelektranama na ugljen, 15% u termoelektranama na prirodni plin, te 10% u postrojenjima na naftu. U hidroelektranama proizvodi se 20%, a u nuklearnim elektranama 17% svjetske proizvodnje. Iz ovih podataka vidi se da se u biti preko 60% svjetske proizvodnje električne energije proizvodi u nekom obliku termoelektrane.Trendovi pokazuju smanjenje korištenja fosilnih goriva kao energenta u budućnosti. To će se postići mjerama kao što su gašenje postojećih termoelektrana, ograničavanje gradnje novih termoelektrana i elektrifikacija transporta. Cilj je smanjiti zagađenje zraka, izbjeći tragedije koje se događaju u rudnicima i smanjiti emisije stakleničkih plinova koji uzrokuju klimatske promjene. Udio fosilnih goriva kao neobnovljivog izvora energije u budućnosti će preuzeti obnovljivi izvori energije.
Literatura korištena za poglavlje "Termoelektrane":
Bogdan Ž., Generatori pare - Interna skripta, Fakultet strojarstva i brodogradnje, Sveučilište u Zagrebu
Bogdan Ž., Termoenergetska postrojenja - Interna skripta, Fakultet strojarstva i brodogradnje, Sveučilište u Zagrebu
Kreuh, L., Generatori pare, Školska knjiga, Zagreb, 1978. [51]
Nuklearne elektrane
Nuklearna elektrana je vrsta termoelektrane koja kao izvor energije koristi toplinu dobivenu fisijama nuklearnog goriva u nuklearnom reaktoru. Dobivena toplina ovim postupkom služi za proizvodnju pare koja pokreće parnu turbinu spojenu na električni generator.
Princip rada nuklearne elektrane
Da bi se oslobodila dovoljna količina energije nužno je koristiti moderatore nuklearne reakcije. U nuklearnim elektranama kao moderator se najčešće koristi teška voda koja je dobila takav naziv iz razloga što je teža od obične vode za otprilike 10%, ali još se može koristiti i obična voda,grafit, itd. To je zbog toga što teška voda sadrži veću koncentraciju deuterija, izotopa atoma vodika. U trenutku sudara slobodnog neutrona i atoma urana U-235 dolazi do cijepanja atoma U-235 na dva manja atoma i nekoliko slobodnih čestica uz oslobađanje ogromne količine energije. Teška voda koja se nalazi unutar reaktora skuplja tu energiju u obliku topline i prenosi je do rezervoara koji sadrži običnu vodu. Obična voda tom se prilikom pretvara u paru koja pokreće turbine rotora generatora električne energije.
Nuklearna fisija
Nuklearna fisija je reakcija do koje dolazi kad atom postane nestabilan pa se pod djelovanjem jake i elektrostatske sile dolazi do raspada na manje atome i otpuštanja neutrona. U slućaju Uranija 235, jezgra popirima jedan neutron pa nastaje nestabilan Uranij 236 koji se raspada. Tijekom ovog procesa se gubi dio mase prvotnog atoma koja se pretvara u toplinsku energiju. Fisabilnim se izotopima nazivaju svi izotopi koji primitkom neutrona postaju nestabilni i sami se raspadnu. Jedini u prirodi dostupan fisabilni izotop je Uranij 235 koji čini tek 0.7% svjetskih zaliha uranija. Ostali fisabilni izotopi su: U233, Pu239 te Pu241. Prirodni se radioaktivni raspad odvija presporo za praktičnu primjenu, pa se velika količina goriva stavlja zajedno što osigurava iskorištavanje emitiranih neutrona, a time i lančanu reakciju u nuklearnom reaktoru. Da bi se povećala vjerojatnost fisije, u većini se reaktora koriste moderatori tj tvari koje imaju svojstvo usporavanja neutrona što su najčešće voda ili grafit.
Nuklearni otpad
Treba napomenti kako je odlaganje nuklearnog otpada jedan od najvećih izazova kod korištenja nuklearnih elektrana. Samo Sjedinjene Američke Države proizvedu oko 2000 tona nuklearnog otpada godišnje u svojim nuklearnim elektranama. S obzirom da nuklearne elektrane moraju zadovoljavati najveće sigurnosne uvjete incidenti su jako rijetki. Nuklearni otpad ostaje radioaktivan više stotina, pa i tisuća godina, te su iz toga razumljivi postavljeni visoki sigurnosni uvjeti. Za to vrijeme potrebno je osigurati mjesto za čuvanje od istjecanja radijacije.
Dijelovi nuklearne elektrane
1. Nuklearni reaktor je element u kojoj je odvija kontrolirana lančana reakcija nuklearne fisije. Postoji nekoliko podjela energetskih nuklearnih reaktora ili prema tipu fisije koja se koristi, vrsti goriva, hladioca i moderatora. Fisijom atoma goriva nastaju brzi neutroni, odnosno atomi velike energije. Gorivo je najčešće prirodni ili obogaćeni uranij u formi metala ili oksida. Nuklearne elektrane većinom koriste obogaćeno gorivo koje sadrži 1 do 5 % urana 235. Prirodni uran sadrži samo 0,71 % tog izotopa. Zato uran treba obogatiti. Za razdvajanje obaju izotopa urana (urana 235 i urana 238) najprimjereniji je uran u plinovitom obliku (UF6). Hladioc je medij koji odvodi toplinu nastalu fisijama iz nuklearnog reaktora. Često je hladioc voda (obična ili teška), a može biti i ugljikov dioksid ili helij. Moderator je tvar koja usporava brze neutrone nastale fisijama do termičkih brzina, odnosno energija.
2. Tlačna posuda je element kojom se osigurava konstantan tlak primarnog kruga. U osnovi, to je posuda volumena 40-60 m^3 opremljena grijačem snage 1 - 2 MW. Zagrijavanjem u tlačniku može se ispariti određena količina vode, čime se podiže tlak i sprječava isparavanje u reaktoru.
3. Generator pare je komponenta nuklearne elektrane u kojoj se odvija predaja topline iz primarnog u sekundarni krug i isparavanje sekundarne vode. U donjem dijelu se nalazi nekoliko tisuća U-cijevi kroz koje teče primarna voda. Oko U-cijevi teče voda sekundarnog kruga, koja s njih uzima toplinu. Para nastala vrenjem sekundarne vode odlazi prema gornjem dijelu parogeneratora, gdje se nalaze separatori vlage, koji osiguravaju da u pari koja odlazi prema turbinama nema kapljica tekuće vode.
4.Parne turbine - nakon prolaska kroz visokotlačnu turbinu, tlak pare je znatno niži. Iz pare se prije ulaska u niskotlačnu turbinu dodatno separira vlaga, da bi se spriječila oštećenja lopatica turbine. Niskotlačne turbine su dimenzijama veće od visokotlačnih, a ovisno o snazi elektrane postojat će više niskotlačnih turbina.
5. Električni generatori u upotrebi u nuklearnim elektranama su najčešće 4-polni sinkroni generatori. Električna snaga današnjih nuklearnih elektrana iznosi od 500 do 1500 MW po reaktoru. Na lokaciji nuklearne elektrane se može nalaziti više reaktora, ali na svaki reaktor dolazi po jedan generator.
6. Kondenzator je izmjenjivač topline u kojem se para koja je prošla kroz turbine kondenzira, kako bi se mogla vratiti u parogenerator i zatvoriti sekundarni krug.
Utjecaj nuklearne energije na okoliš
Nuklearna energija ima najmanje 3 vrste zagađenja okoliša:
- stvaranje radioaktivnog otpada u nuklearnim elektranama
- oslobađanje malih količina radioaktivnih izotopa tijekom rada
- zagađenje u slučaju nuklearne katastrofe
Emisije nuklearnih elektrana
Krajem svakog radnog ciklusa (do dvije godine) reaktori pod tlakom smanjuju količinu bora u primarnom sustavu za hlađenje (voda koja hladi reaktor), što ima za posljedicu da određena količina ozračenog bora izađe iz elektrane. Tricij je radiaktivni izotop vodika koji emitira beta čestice niske energije i mjeri se u becquerelima po litri. Tricij ostaje otopljen u vodi kad izlazi iz nukelarne elektrane. Primarna briga o otpuštenom triciju je kontrola prisutnosti u vodi. Tricij je najmanje opasan jer emitira vrlo slaba zračenja i relativno brzo napušta tijelo. Neka istraživanja su pokazala povećan rizik od zaraznih bolesti i raka, među ljudima koji žive u blizini nuklearnih elektrana. Najnoviji rezultati ipak nisu u skladu s ranijim istraživanjima, tako da nema uvjerljivih dokaza da nuklearne elektrane štetno dijeluju na čovjeka.
Nuklearne nesreće
1957. godine požar u Windscaleu u Velikoj Britaniji zapalio je plutonij što je rezultiralo zagađenjem okolnih farmi za proizvodnju mlijeka. Nesreća je uzrokovala 33 smrti od raka i 78 milijuna dolara štete. 1986. godine Černobilska katastrofa u Ukrajni je bila najveća nuklearna katastrofa koja je odnijela 5000 života. Velike količine radioaktivne prašine su se proširile Europom. Zadnja velika katastrofa dogodila se 2011. godine u Fukushimi.
Tipovi nuklearnih elektrana
PWR-Pressurized water reactor
Princip rada elektrane
Elektrana (Slika 36) je podijeljena na 3 potpuno odvojena sustava: primarni krug, sekundarni krug, rashladni ciklus
Primarni krug
Voda se u primarnom krugu održava na visokom tlaku oko 155 bar u tekućem stanju i ispod kritične temperature od 374°C. Razlog potrebe za visokim tlakom i relativno niskoj temperaturi u primarnom krugu je želja izbjegavanja pojave vodene pare u reaktorskoj posudi. Para je nepoželjna jer smanjuje konvektivni faktor prijenosa topline na relaciji goriva šipka- rashladna voda što može rezultirati naglim povećanjem temperature nuklearnog goriva, a time i taljenja same jezgre. Tlačnik je element primarnog kruga kojemu je zadaća osigurati konstantan radni pritisak što se vrši skupom eklektičnih grijača, prskalica hladne vode, ispušnih ventila I sigurnosnih ventila. Pumpe osiguravaju dovoljan protok rashladne vode kroz reaktorsku posudu tako da se na nijednom mjestu lokalno ne pojavi vodena para.
Sekundarni krug
Primarni i sekundarni krug su povezani pomoću generatora pare u kojem nastaje suhozasićena vodena para tlaka oko 62 bara. Također se i generator pare projektira s visokim optočnim brojevima čime se osigurava intenzivniji prijenos topline s primarnog na sekundarni krug. U generatoru pare se para sakuplja u bubnju na vrhu i vodene kapljice se separatorima izdvajaju iz struje. Para zatim odlazi u parnu turbinu gdje ekspandira do kondenzatorskog tlaka.
Rashladni krug
Rashladni krug je povezan sa sekundarnim putem kondenzatora. Rashladna voda se može hladiti direktno preko kondenzatora s vodom iz rijeka ili mora ili posebnim sustavom rashladnih tornjeva.
BWR-Boiling water reactor
BWR tip reaktora (Slika 37) je drugi najčešći tip reaktora. Također se koristi isti tip goriva U-235. razlika u odnosu na PWR je ta što nema sekundarni krug u kojem se proizvodi para, nego se para proizvodi u primarnom krugu pa reaktor preuzima ulogu generatora pare. Velika prednost BWR reaktora je niži pritisak, i jednostavnija konstrukcija od PWR reaktora. Nedostatak ovog tipa je što je sva oprema u dodiru s vodenom parom kontaminirana.
Primarni krug
BWR tip reaktora radi na nižim tlakovima od PWR reaktora (oko 75 bar). Prolaskom napojne vode kroz snop gorivih šipaka dolazi do djelomičnog prelaska vode u vodenu paru pa se struja neisparene vode natrag miješa s svježom napojnom vodom I opet dolazi do djelomičnog isparivanja. Sadržaj pare se u procesu isparivanja drži niskim da ne dođe do izostanka hlađenja goriva. Ovaj tip reaktora ima samoregulacijsko svojstvo usporavanja oslobađanja topline kod porasta udjela vodene pare u reaktorskoj posudi. Razlog tome je što napojna voda ima ulogu moderatora pa se povećanjem sadržaja pare zbog njene manje gustoće gubi svojstvo usporavanja neutrona.
Rashladni krug
Rashladni krug je povezan sa sekundarnim putem kondenzatora. Rashladna voda se može hladiti direktno preko kondenzatora s vodom iz rijeka ili mora ili posebnim sustavom rashladnih tornjeva.
LMFBR (brzi oplodni reaktor hlađen tekućim metalima)
Ovaj tip reaktora pripada skupini oplodnih reaktora koji za pokretanje reakcije fisije koriste brzi neutronski spektar. Odlika oplodnih reaktora je da proizvode više goriva, nego ga sami koriste. Kao radna tvar u primarnom krugu se koriste vrlo loši moderatori neutrona kao što su živa Hg, olovo Pb, slitina natrija I kalija NaK, kositar Sn jer je njihovo usporavanje nepoželjno u ovom procesu. Reaktor je podijeljen u 2 djela: fisabilna jezgra i nefisabilni omotač. U fisabilnoj jezgri se nalazi mješavina do 20% plutonijeva dioksida (PuO2) od čega je dio Pu239 i barem 80% uranijeva dioksida (UO2) s dijelom fisabilnog U235. U omotaču se nalazi prirodni ne fisabilni uranij U-238 koji se primitkom brzih neutrona nakon dvostrukog beta raspada goriva prvo transformira u neptunij 239 Np239, a zatim u plutonij 239 Pu239 koji se može koristiti u reaktorima koji rade termalnom neutronskom spektru ili za proizvodnju nuklearnog oružja što je bila primarna svrha ovog tipa reaktora. Postoje dvije izvedbene varijante: bazenski i kružni sustav (Slika 38). Razlika je u smještaju izmjenjivača topline između primarnog i sekundarnog kruga koji se u bazenskom tipu nalazi unutar reaktorske posude, a u kružnom sustavu izvan posude. U sekundarnom krugu se također koristi tekući metal, a u tercijarnom se koristi voda.
GCR (plinom hlađeni reaktor)
GCR tip reaktora (Slika 39) može koristiti prirodni uranij kao gorivo. Radni medij u primarnom krugu je u plinovitom stanju, najčešće ugljikov dioksid ili helij. Kao moderator se koristi grafit u obliku kanala kroz koje struji radni medij. Kroz iste se kanale u svrhu gašenja reaktora mogu spustiti kontrolne šipke kao primarna mjera sigurnosti. Sekundarna mjera je ubacivanje dušika u reaktorsku posudu, a finalna mjera sigurnosti je ubacivanje kuglica od neutronskog otrova Borona (Bo) koji prekida fisijsku reakciju u cijelom gorivom sklopu. Najčešća podvrsta je bila MAGNOX reaktor razvijen u Velikoj Britaniji za istovremenu proizvodnju električne energije i plutonija Pu239 u svrhu proizvodnje oružja. Sljedeći najzastupljeniji je AGR (napredni plinski reaktor) koji radi pri višim temperaturama i tlakovima (do 170bar I 640 °C) i time postiže viši termodinamičku učinkovitost. Ovo su sve reaktori prve I druge generacije i oni izlaze iz upotrebe, ali se razvijaju novi plinom hlađeni reaktori četvrte generacije kao što su reaktori vrlo visoke temperature (VHTR) i reaktori s gorivom u obliku kuglica (PBR).
Fuzijske elektrane
Energija nuklearne fuzije
U fizici je nuklearna fuzija proces u kome se spaja više lakih atomskih jezgri pri čemu nastaje teža atomska jezgra. To je praćeno oslobađanjem ili apsorpcijom energije što je ovisno o masi uključenih atomskih jezgri. Nuklearna fuzija lakih elemenata (do željeza) oslobađa energiju koja uzrokuje sjaj zvijezda i eksploziju termonuklearne bombe. Ova reakcija se koristi kod dobivanja energije nuklearne fuzije. Potrebna je znatna energija da bi se izazvala nuklearna fuzija, čak i kod najlakšeg elementa vodika. Međutim, fuzijom lakših jezgri kojom nastaje teža jezgra i slobodni neutron, obično se oslobađa više energije nego što je potrebno da bi se jezgre spojile. Energija oslobođena u većini nuklearnih reakcija je mnogo veća od energije kemijskih reakcija. Fuzijska reakcija može održavati samu sebe ukoliko se dovoljna količina proizvedene energije koristi za održavanje goriva na visokoj temperaturi. U jezgri Sunca visoki pritisak gravitacije omogućava događanje fuzijske reakcije na oko 10 milijuna stupnjeva Celzijeva.
Projekt ITER
Na puno nižem pritisku (10 milijardi puta manjem nego u jezgri Sunca) kojeg mozemo proizvesti na Zemlji, temperature iznad 100 miliona stupnjeva potrebne su za dobivanje fuzijske energije. Kako bi se tolike temperature postigle potrebno je plazmu (ionizirani plin na visokim temperaturama) zadržati dalje od kućišta spremnika te plazme. To se postiže postavljanjem plazme unutar spremnika oblika torusa obavijenog magnetskim poljem kako bi sprijecili izlazak plazme. Ta napredna tehnologija osnova je međunarodnog fuzijskog eksperimenta ITER (International Thermonuclear Energy Reactor - Međunarodni termonuklearni energetski reaktor). Fuzijska reakcija događa se između dva izotopa vodika – deuterija i tricija – razvoj prve generacije fuzijskog reaktora se temelji na toj reakciji (druge fuzijske reakcije zahtjevaju puno više temperature). Deuterij je prirodni izotop koji može biti izdvojen iz vode (u prosjeku 35g na metar kubični vode), dok tricija nema na Zemlji, ali on može biti proizveden iz litija unutar fuzijskog reaktora. Svaka fuzijska reakcija proizvede atom helija i neutron visoke energije. Gorivo koje stane u jedan kamion-cisternu moglo bi proizvest električnu energiju koja bi opskrbila grad s milion stanovnika na godinu dana. Fuzijski reaktori ne proizvode stakleničke plinove, ne zagađuju i ne mogu naštetiti okolini ili uzrokovati klimatske promjene. Deuterij, litij i reakcijski produkti nisu radioaktivini te im je vrijeme poluraspada relativno malo. Tricij jest štetan ali nastaje i nestaje unutar fuzijskog reaktora koji u slučaju kvara, proboja ili bilo kakve nezgode trenutno prestaje s reakcijama i počinje se hladiti. Energija proizvedena u fuzijskim elektranama koristila bi se za proizvodnju električne energije, za proizvodnju topline za industrijske potrebe, a postoji i mogućnost da bi se koristila za prozivodnju vodika.
Europska strategija
Dugoročni cilj istraživanja i razvoja fuzije zemalja članica Europske Unije i Švicarske je izgradnja prototipa reaktora za elektrane koji su sigurni, održivi, ekološki prihvatljivi i ekonomski isplativi. ITER je trenutno najveći svjetski energetski istraživački projekt u gradnji. Sljedeća generacija fuzijskog reaktora – projekt DEMO, čija bi gradnja trebala započeti 2025. godine, bila bi prva komercijalna fuzijska elektrana koja bi od 2035. godine sa snagom od 3 - 4 GW prvi puta trebala proizvest značajnu količinu električne energije i biti model za komercijalne fuzijske reaktore. Ključni problemi izgradnje ne tiču se same fuzije već fizike materijala i fizike plazme tako da paralelno s razvijanjem reaktora je potrebno tražiti i testirati nove izdržljive materijale.
Literatura korištena za poglavlje "Fuzijske elektrane":
(1) Fusion Research, An Energy Option for Europe's Future, European Commission, Directorate- General for Research, Fusion energy Research, Brussels 2007, ISBN 92-79-00513-8
(2) ITER: Uniting science today global energy tomorrow, European Commission, Directorate- General for Research, Fusion energy Research, Brussels 2007, ISBN 978-92-79-05548-5
(3) Fusion power, Wikipedia http://en.wikipedia.org/wiki/Fusion_power
Obnovljivi izvori
Hidroelektrane
Uvod
Hidroelektrane su energetska postrojenja u kojima se potencijalna energija vode pomoću vodne turbine pretvara u mehaničku (kinetičku) energiju, koja se u električnom generatoru koristi za proizvodnju električne energije. Iskorištavanje energije vodnog potencijala ekonomski je konkurentno proizvodnji električne energije iz fosilnih i nuklearnog goriva, zato je hidroenergija najznačajniji obnovljivi izvor energije. U zadnjih trideset godina proizvodnja u hidroelektranama je utrostručena, a njen udio povećan je za 50 %, za to je vrijeme proizvodnja u nuklearnim elektranama povećana za 100 puta, a udio oko 80 puta. Ti podaci pokazuju da se proizvodnja u hidroelektranama brzo povećava, ali značajno zaostaje za proizvodnjom u nuklearnim (ali i termoelektranama). Razlog takvom stanju leži u činjenici da iskorištavanje hidroenergije ima bitna tehnička i prirodna ograničenja. Glavno ograničenje jest zahtjev za postojanjem razlike geodetske visine i obilnog izvora vode kroz cijelu godinu jer je skladištenje el. energije skupo i vrlo štetno za okoliš, osim toga na određenim lokacijama je za poništavanje utjecaja oscilacija vodostaja potrebno izgraditi brane i akumulacije. Njihovom izgradnjom značajno se povećava investicija, utjecaj na okoliš, potrebna je zaštita od potresa, a u zadnje vrijeme postoje i značajne terorističke prijetnje.
Utjecaji na okoliš dijele se na:
- fizičke faktore: količina vode i kvaliteta površinskih voda, klimatski faktori, kvaliteta zraka, geologija i seizmologija, erozija, promjena pejzaža.
- biološke: riblji fond, biljni i životinjski svijet, vodni i ekosustavi.
- socioekonomske faktore: ljudske aktivnosti (vodoopskrba, poljoprivreda, kontrola poplava, transport-putovi), korištenje zemljišta, zdravstvo te arheološki i povijesni.
U većini slučajeva potapa se kvalitetno zemljište, a u zamjenu se dobiva manje kvalitetno zemljište, u nekim slučajevima postoji nužnost iseljavanja lokalnog stanovništva, uništava se zdrava šuma, nestaje vegetacija, svi postojeći objekti na mjestu potapanja uklanjaju se ili ostaju potopljeni.
Pozitivna strana kod akumulacija je mogućnost stvaranja ribolovnog i zabavnog turizma koji donosi lokalnoj zajednici velika finacijska sredstva. Veoma važna karakteristika akumulacija je regulacija vodotoka rijeka. U vrijeme kad su riječni vodotoci visoki postoji mogućnost njihove regulacije pomoću akumulacije.
Danas je u svijetu iskorišteno oko 25 % raspoloživog vodnog potencijala, a neiskorištena većina nalazi se u nerazvijenim zemljama. Takvo stanje je s jedne strane dobro jer se u budućnosti najveći porast potrošnje očekuje upravo u nerazvijenim zemljama, a s druge strane pokrivanje daljnjeg porasta potrošnje u razvijenim zemljama bazirat će se na fosilnom i nuklearnom gorivu te ostalim oblicima obnovljivih izvora energije. Hidroelektrane se značajno koriste u proizvodnji električne energije iz više razloga:
- Nema troškova goriva, voda je besplatna, pod uvjetom da je ima u dovoljnoj količini. Puštanje hidroelektrane u pogon vrlo je brzo, te se koristi za pokrivanje dnevnih vršnih opterećenja električne mreže.
- Moderne hidroelektrane mogu do 90% energije vode pretvoriti u električnu energiju.
- Ne postoji utjecaj povećanja cijene goriva, a svjedoci smo velikih povećanja u zadnjih nekoliko godina.
- Neovisnost o uvozu goriva.
- Hidroenergija je glavni izvor obnovljive energije i predstavlja 97% energije proizvedene u svim obnovljivim izvorima električne energije.
- Hidroenergija je čista, nema otpada. Postoje doprinosi efektu staklenika (uništavanje vegetacije, truljenje), ali su u većini slučajeva zanemarivi u odnosu na termoelektrane i sl.
- Umjetna jezera nastala izgradnjom hidroelektrana lokalno doprinose ekonomiji i omogućavaju navodnjavanje, vodoopskrbu, turizam i rekreaciju
Snaga postrojenja i proizvedena energija ovise o:
- Raspoloživom vodenom padu (razlici geodetske visine). Visina pada ovisi o visini brane, što je pad veći, postoji veći energetski potencijal. Energetski potencijal je direktno proporcionalan visini pada, tako da ista količina vode, ukoliko pada sa dva puta veće visine proizvodi duplo više električne energije.
- Raspoloživom protoku vode. Električna snaga i energija također su direktno proporcionalni količini vode koja prolazi kroz turbinu. Dva puta veća količina vode proizvest će dva puta više električne energije kod iste visine vodenog pada.
Ovisnost snage o navedenim veličinama izražena je sljedećim izrazom:
gdje je:
- P - Snaga [W]
- eta - stupanj iskoristivosti postrojenja
- Q - raspoloživi protok vode [m3/s]
- h - raspoloživi vodeni pad [m]
- ρ - gustoća vode [kg/m3]
- g - ubrzanje sile teže [m/s2]
Tehnologija gradnje hidroelektrana se nije mijenjala kroz 20. stoljeće.
Hidroelektrane u principu funkcioniraju na vrlo jednostavnoj osnovi: voda iz akumulacijskog jezera prolazi kroz branu, pokreće turbinu koja onda pokreće generator električne energije.
Osnovne komponente klasične hidroelektrane
- Brana - Većina hidroelektrana se opskrbljuje vodom iz akumulacijskih jezera. Brana predstavlja građevinu kojoj je zadaća osiguravati akumulaciju vode. Akumulacijska jezera su često urbanizacijski tako riješena da su ujedno i rekreacijska jezera.
- Ulazni presjek - Otvor na brani se otvori i kroz kontrolna vrata voda cjevovodom (najčešće uslijed gravitacije) dolazi do turbine određenim masenim protokom.
- Turbina - mlaz vode udara i okreće lopatice turbine koja je vratilom vezana na generator. Najčešći tip turbina za hidroelektrane su Francisove. Takve turbine teže do 172 tone i postižu brzinu vrtnje do 90 okretaja u minuti.
- Generator - Kako samo ime govori, generator generira električnu energiju. U osnovi proces se sastoji od rotacije serija magneta unutar namotaja žica. Ovime se ubrzavaju elektroni, koji proizvode električni naboj. Broj generatora zavisi od elektrane do elektrane. Osnovni dijelovi svakog generatora su:
- Vratilo
- Uzbudni namot
- Rotor
- Stator
Kako se turbina okreće uzbudni namot šalje električni napon rotoru. Rotor predstavlja seriju velikih elektromagneta koji se okreću unutar gustih namotaja bakrenih žica, koje predstavljaju stator. Magnetsko polje između magneta i žičanih namotaja stvara električni napon.
http://www.threeohsevenphysics.blogspot.com/
- Transformator - Na izlazu iz elektrane povećava napon izmjenične struje (smanjujući jakost struje) da bi se smanjili gubici prijenosa energije.
- Dalekovodi - Iz svake elektrane vode dalekovodi, koji osim stupa dalekovoda redovito imaju i 4 vodiča. Tri nose struju napona koja izlazi iz transformatora, istog iznosa i međusobno pomaknutih u fazi za 120 stupnjeva, dok četvrta predstavlja nul-vodič.
- Izlazni presjek - Iskorištena voda se cjevovodima vraća u donji tok rijeke.
http://www.threeohsevenphysics.blogspot.com/
Voda u akumulacijskom jezeru je zapravo uskladištena energija. Kada se zaslon na brani otvori voda poteče kroz cjevovod povećavajući svoju kinetičku energiju. Količina generirane električne energije se određuje s nekoliko faktora. Dva najvažnija faktora su maseni protok vode i raspoloživi vodeni pad. Raspoloživi vodeni pad je parametar koji označava udaljenost od površine vode do turbina. Kako raspoloživi vodeni pad i maseni protok vode rastu, tako raste i količina proizvedene struje. Raspoloživi pad je u većini slučajeva ovisan o količini vode u akumulacijskom jezeru.
Hidroelektrane su učinkovitija postrojenja od termoelektrana. Kao što je prethodno spomenuto, predstavljaju elektrane obnovljivih izvora energije. S tim u vezi, i s obzirom da je hidroenergija jedini obnovljivi izvor energije iz kojeg je moguće dobiti veće snage, u interesu je graditi što više hidroelektrana. Međutim, postoje određene prepreke. Većina pogodnih lokacija za izgradnju hidroelektrana je već iskorištena i ostaju samo manje pogodne lokacije na kojima je smanjena učinkovitost elektrane i za čiju je gradnju potrebno raditi i veće promjene u okolišu.
Hidroenergija se tradicionalno smatra čistom i ekološkom. Proizvodnja električne energije u hidroelektranama ne zagađuje atmosferu, ne pridonosi stvaranju kiselih kiša i ne uzrokuje stvaranje otrovnog otpada. Ipak, gradnja hidroelektrana uzrokuje promjene u ekosustavu riječnih tokova na kojima se grade. Učinci koje hidroelektrana može imati na ekosustav zavise o 4 čimbenika:
- Veličina i brzina protoka rijeke ili sl. na kojoj je hidroelektrana locirana.
- Klimatski uvjeti i oblik sredine prije gradnje elektrane.
- Vrsta, veličina i konstrukcija elektrane i način na koji je pogonski vođena.
- Ako postoji više od jedne elektrana na istoj rijeci, i ako nisu relativno blizu jedna drugoj, moguće je da učinci na ekosustav jedne elektrane su zavisni o učincima druge elektrane.
Čimbenici 1 i 2 zavise od spektra kompleksnih geoloških, zemljopisnih i meteoroloških uvjeta. Ova dva čimbenika su najbitniji faktor pri određivanju veličine, vrste, konstrukcije i načina na koji će buduća elektrana raditi.
Loše posljedice koje gradnja hidroelektrane može imati na okoliš su sljedeće:
- Usporenje toka rijeke radi stvaranja akumulacijskih jezera i povećanje prosječne temperature vode.
- Povećanje udjela dušika u riječnoj vodi.
- Sedimentacija i erozija.
- Poplave.
- Klimatske promjene.
- Potencijalno povećanje tektonske aktivnosti područja.
- Potencijalno izumiranje nekih biljnih ili životinjskih vrsta.
- Poremećenje migracije ribljih vrsta.
Tipovi hidroelektrana
Tri su osnovna tipa: protočne, akumulacijske i reverzibilne.
Protočne hidroelektrane
Protočne hidroelektrane su one čija se uzvodna akumulacija može isprazniti za manje od dva sata rada kod nazivne snage ili takva akumulacija uopće ne postoji. Kinetička energija vode se skoro direktno koristi za pokretanje turbina. Ako postoji akumulirana voda onda se može regulirat vodeni tok i elektrana može služit kada je najveće opterećenje mreže ili za kontinuiranu proizvodnju električne energije dok bez akumulirane vode služi samo za najveća opterećenja mreže. Ovisne su o trenutno raspoloživom vodenom toku. Grade se na rijekama koje koje imaju konstantan protok tokom cijele godine ili imaju vrlo male razlike. Kinetička energija vode se skoro direktno koristi za pokretanje vodnih turbina. U protočnim hidroelektranama upotrebljavaju se Kaplan turbine.
Prednosti protočnih hidroelektrana
- Imaju mali utjecaj na okoliš i izgradnjom protoćnih elektrana smanjuje se utjecaj termoelektrana za vrijeme vršnih opterećenja mreže
- Ne stvara se akumulirana voda i voda ne mjenja svoj prirodni tok. Nije potrebno raseljavat okolno stanovništvo jer ne dolazi do poplava
Nedostaci protočnih hidroelektrana
- Zbog toga što imaju malen vodeni kapacitet ili uopce nemaju, ne moze zadovoljit ukupnu potražnju koju mreža zahtjeva
- Ovise o prirodnom toku rijeke ,nemaju konstantnu proizvodnju elektrićne energije tokom cijele godine
Akumulacijske hidroelektrane
Akumulacijske su najčešće hidroelektrane, dobra strana je mogućnost akumulacije jeftinog izvora energije kad je ima u izobilju i planiranje potrošnje po potrebi. Snaga akumulacijske hidroelektrane zavisi o visini vodenog stupca između površine vode u akumulacijskom jezeru i odvodu koji se nalazi poslije vodene turbine. Rade na način da skladištu potencijalnu energiju stvaranjem akumulacijskog jezera. Tlačna cijev služi za protok vode od akumulacijskog jezera do vodene turbine. Hidroelektrane se mogu podijeliti prema smještaju strojarnice, prema načinu korištenja vode, prema obujmu akumulacijskog bazena i raspoloživom padu.
Primjer akumulacijske hidroelektrane je HE Đale sa strojarnicom u tijelu armiranobetonske gravitacijske brane. Akumulacijsko jezero HE Đale služi za dnevno izravnanje protoka. Branom visine 40,5 metara ostvaruje se akumulacija za dnevno izravnanje dotoka. Maksimalni obujam akumulacije je 3,7 hm3. Ukupna instalirana snaga HE Đale je 40,8 MW (2 Kaplanove turbine x 20,4 MW iz 1989.). Raspoloživi konstruktivni pad vode je 21 metar. Ukupni instalirani volumni protok je 220 m3/s (2 x 110 m3/s). Srednja godišnja proizvodnja električne energije je 128 GWh, dok je maksimalna proizvodnja bila 208 GWh (2010.)
- Pribranske hidroelektrane - čija je strojarnica smještena ispod same brane.Primjer pribranske hidroelektrane je HE Peruća.
HE Peruća je hidroelektrana na rijeci Cetini. Sagrađena 1960. godine sa snagom od 41,6 MW na dva generatora od 20,8 MW, koja je poslije renoviranja pojačana na 61,4 MW na dva Francisova generatora od 30,7 MW. bBrana je duga 467 metara, visoka 67 metara te ima volumen od 925 000 m3. Brana je građena od prirodnog materijala naročito gline koja je kao materijal gotovo vodonepropusna. Nakon što je brana nasuta na njoj je navučena betonska ovojnica koja je spriječila osipanje nasutog materijala.
- Derivacijske hidroelektrane - strojarnica je smještena puno niže i spojene su cjevovodima s akumulacijskim jezerom. Primjer derivacijske hidroelektrane je HE Zakučac.
HE Zakučac je hidroelektrana na rijeci Cetini. Ukupna instalirana snaga HE Zakučac je 486 MW (2 Francisove turbine x 108 MW iz 1962. + 2 Francisove turbine x 135 MW iz 1980.). Maksimalna godišnja proizvodnja električne energije je 2 430 GWh (2010.), dok je srednja godišnja proizvodnja 1440,46 GWh.
Prema veličini akumulacijskog jezera
- Dnevnom akumulacijom, kod kojih se akumulacija puni po noći, a prazni po danu
- Sezonskom akumulacijom, kod kojih se akumulacija puni tijekom kišnog, a prazni tijekom sušnog razdoblja
- Godišnjom akumulacijom, kod kojih se akumulacija puni tijekom kišnih, a prazni tijekom sušnih godina
Prema raspoloživoj visini pada vodotoka
- Niskotlačne, grade se za specifične padove do 25m. Pri tome je karakteristično da im cjelokupni pad stoji na raspolaganju neposredno kod elektrane, bez potrebe za tlačnim dovodima i cjevovodima. Mogu biti pribranske i derivacijske. Koriste se takozvane Kaplanove turbine koje rade slično kao i Francisove turbine, s tim da je broj lopatica daleko manji. Primjerice, na rijeci Dravi izgrađene su tri niskotlačne, derivacijske hidroelektrane (HE Sjever).
- Srednjotlačne, s padom između 25 i 200 m. Mogu biti pribranske i derivacijske, koje se najčešće grade na mjestima gdje rijeka stvara zavoj koji se tada presiječe kanalom ili cjevovodom.Koriste se takozvane Francisove turbine, kod kojih provodni dio s lopaticama okružuje kotač. U provodnom dijelu ovih turbina potencijalna se energija vode samo djelomično pretvara u kinetičku, tako da s određenim pretlakom dospijeva u obrtno kolo (kotač) i njemu predaje svoju energiju.
- Visokotlačne, grade se u brdovitim krajevima za padove veće od 200 m. Mogu biti pribranske i derivacijske. Radi li se o pribranskim hidroelektranama, s obzirom na veličinu pada vodotoka, ove hidroelektrane su obično s djelomičnom ili potpunom godišnjom regulacijom protoka i mogućnošću vršnog rada u tijeku dana. Najčešće su međutim visokotlačne hidroelektrane derivacijske budući da su zahvat i strojarnica prostorno odijeljeni; voda se naime dovodi do turbina cjevovodom dugačkim i više kilometara. Primjenjuju se takozvane Peltonove turbine kod kojih se potencijalna energija vode u provodnom dijelu potpuno pretvara u kinetičku, i u obliku vodenog mlaza pokreće lopatice turbine pretvarajući kinetičku energiju u mehaničku.
- velike
- male
- mikro
- piko
- Razlika između velikih i malih hidroelektrana, odnosno donji i gornji granični iznosi snage u cijelom svijetu pri tome nisu jednoznačno određeni pa se, na primjer, mogu kretati od 5 kW (u Kini) do 30 MW (SAD-u), dok se kod nas malom smatra HE snage između 50 i 5000 kW. Također valja reći da u nekim zemljama postoji i dodatna podjela hidroelektrana malih snaga na mikro, mini i male hidroelektrane.
Reverzibilne hidroelektrane
To je posebna vrsta hidroelektrane koja osim što proizvodi električnu energiju iz vode kao i svaka druga hidroelektrana, tu istu vodu može pumpati u doba kada je to najisplativije, (najjeftinije) što je uglavnom noću. reverzibilne hidroelektrane (eng.: pumped-storage plant), koja ima dva skladišta vodene mase. To su:
- Gornje akumulacijsko jezero je isto kao kod klasičnih hidroelektrana. Gradnjom brane osigurava se akumulacija vode, koja protiče kroz postrojenje i rezultira proizvodnjom električne energije.
- Donje akumulacijsko jezero ulijeva se u drugo, donje, akumulacijsko jezero, umjesto da se vraća u osnovni tok rijeke.
Reverzibline elektrane su vrlo ekonomične jer poravnava razlike u opterečenju mreže. Reverzibilna turbina/generator može se ponašati i kao pumpa i kao turbina. U razdoblju niske potražnje električne energije voda se pumpa iz nižeg u viši spremnik vode. U razdoblju više potražnje za električnom energijom voda se propušta, kroz turbinu natrag u niži rezervoar i pritom se proizvodi električna struja. Ovaj tip hidroelektrana je najisplativiji za spremanje velike količine potencijalne energije vode koja može kasnije biti upotrebljena za proizvodnju električne energije. Uzimajući u obzir gubitke uslijed isparavanja akumulirane vode i gubitke uslijed pretvorbe, približno 70% do 85% električne energije koja se koristi za pumpanje vode u viši spremnik može biti ponovno dobijeno, su kritični čimbenici pri odlučivanju o izgradnji. Relativno niska gustoća energije pumpanog spremnika iziskuje ili veliku količinu vode ili veliku razliku u visini između dvaju spremnika. Jedini način da stvorimo značajniju količinu električne energije je taj da imamo veliku količinu vode na što višem mjestu iznad donjeg spremnika. Na nekim područjima ovo se pojavljuje prirodno, a na nekim je čovjek svojim djelovanjem to omogućio. Novi planovi za sustave napumpanih spremnika je iskoristit što je više moguće vjetroturbine ili solarnu energiju za pogon pumpi. To bi moglo omogućiti da cijeli proces bude mnogo učinkovitiji i da se uglade promjenjivosti energije dobijene od vjetra ili sunca.
Prednosti reverzibilnih hidroelektrana
- Spremanje velike količine potencijalne energije vode , koja kasnije može biti upotrebljena za proizvodnju električne energije
- Poravnava razlike u opterečenju mreže
- Dozvoljava termoelektranama , nuklearnim elektranama, obnovljivim izvorima da rade s vršnom iskoristivošću , a da pritom se izbjegne rad na maksimalnom opterečenju
- Velike uštede goriva za termoelektrane
Nedostaci reverzibilnih hidroelektrana
- Veliki investicijski troškovi
- Ne moze zadovoljit ukupnu potražnju koju mreža zahtjeva
RHE Velebit sastoji se od gornjeg umjetno jezero koje se zove Štikada, te se nalazi iza Velebita na Gračačkoj visoravni. Voda iz jezera Štikade se u turbinskom radu spušta dolje i koristi za proizvodnju električne energije, a u crpnom radu se ta ista voda pumpa u to gornje jezero. Prosječni srednji godišnji dotok u to jezero je 11,94 m3/s. Ukupna instalirana snaga hidroelektrane je 276 MW (instalirana snaga vodnih turbina), dok je u crpnom režimu snaga 240 MW (instalirana snaga crpki).
http://www.geog.pmf.hr/e_skola/geo/mini/obnov_izvori_energ/hidroenergija.html
http://www.hk-phy.org/energy/alternate/print/hydro_is_print_e.html
Literatura korištena za "Tipovi hidroelektrana"
- http://en.wikipedia.org/wiki/Pumped-storage_hydroelectricity
- http://hr.wikipedia.org/wiki/Hidroelektrana_Velebit
- http://en.wikipedia.org/wiki/Run-of-the-river_hydroelectricity
- http://hr.wikipedia.org/wiki/Hidroelektrana
- http://www.darvill.clara.net/altenerg/pumped.htm
- http://www.ijitee.org/attachments/File/v3i2/B0971073213.pdf
Male hidroelektrane
Uvod
Velike količine vode u cjevovodima pitke vode same se nameću kao potencijalni izvor energije. S obzirom da je protok kroz cjevovod postoji kod vodocrpilišta, posebno na dijelu cjevovoda oko izvorišta, vodosprema i crpilišta, gdje se tok vode kroz cijevi uglavnom postiže samom gravitacijskom silom, postavljanje turbine i pripadnih električnih generatora su zahvati koji ne ugrožavaju dobavu pitke vode, a istovremeno proizvode električnu energiju. Svjetski energetski trend posljednjih godina je sve veći iskorak ka obnovljivim izvorima energije. Za male hidroelektrane se smatra da nemaju nikakav štetan utjecaj na okoliš, za razliku od velikih čija se štetnost opisuje kroz velike promjene ekosustava (gradnja velikih brana), utjecaji na tlo, poplavljivanje, utjecaji na slatkovodni živi svijet, povećana emisija metana i postojanje štetnih emisija u čitavom životnom ciklusu hidroelektrane koje su uglavnom vezane za period izgradnje elektrane, proizvodnje materijala i transport.
Danas se za tehnologiju vezanu za hidroenergiju, koja se smatra obnovljivim izvorom energije, može reći da je tehnički najpoznatija i najrazvijenija na svjetskoj razini, sa iznimno visokim stupnjem učinkovitosti. 22% svjetske proizvodnje električne energije dolazi iz malih i velikih hidroelektrana.
Pojam male hidroelektrane se može promatrati sa različitih točaka gledišta i razlikuje se od zemlje do zemlje, zavisno o njezinom standardu, hidrološkim, meteorološkim, topografskim i morfološkim karakteristikama lokacije, te o stupnju tehnološkog razvoja i ekonomskom standardu zemlje. Generalno, klasifikacija hidroelektrana na velike i male se vrši prema instaliranoj snazi, klasifikacija se vrši od strane nacionalnih energetskih odbora. Male hidroelektrane se često dalje kategoriziraju u male, mini i micro hidroelektrane.
| Zemlja | micro | mini | male |
| [kW] | [kW] | [MW] | |
| SAD | <100 | 100 - 1000 | 1 - 30 |
| Kina | - | <500 | 0,5 - 25 |
| Francuska | 5 - 5000 | - | - |
| Indija | <100 | 101 - 1000 | 1 - 15 |
| Brazil | <100 | 101 - 1000 | 1 - 30 |
| općenito | <100 | <1000 | <10 |
| Svjetski izvori | Instalirana snaga hidroelektrana | Instalirana snaga malih hidroelektrana |
| 680 GW | 47GW | |
| Hidroenergetski potencijal | Hidroenergetski potencijal za male hidroelektrane | |
| 3000 GW | 180 GW |
Male hidroelektrane predstavljaju kombinaciju prednosti proizvodnje električne energije iz energije hidropotencijala i decentralizirane proizvodnje električne energije, dok istovremeno ne pokazuju negativan utjecaj na okoliš kao velike hidroelektrane.
U usporedbi sa velikim neke od prednosti malih hidroelektrana su sljedeće:
- gotovo da nemaju nedostataka.
- nema troška distribucije električne energije.
- nema negativnog utjecaja na ekosustav kao kod velikih hidroelektrana.
- jeftino održavanje
U Republici Hrvatskoj trenutno je u pogonu 18 hidroelektrana (izvor: "MAHE: program izgradnje malih hidroelektrana: prethodni rezultati i buduće aktivnosti", 1998.).
| Male hidroelektrane | Instalirana snaga [MW] | Godina puštanja u pogon | |
| Po generatoru | Ukupno | ||
| HE Jaruga | 2 x 2,8 | 5,6 | 1898. |
| HE Ozalj I | 2 x 1 + 2 x 0,8 | 3,6 | 1908. |
| HE Roški Slap * | 2 x 0,886 | 1,772 | 1910. |
| HE T.C. "10. kolovoz" Majdan ** | 2 x 0,6 | 1,2 | 1913. |
| HE Zeleni Vir | 2 x 0,85 | 1,7 | 1922. |
| HE P.I. "Duga Resa" ** | 0,53 + 0,25 + 0,32 | 1,1 | 1937. |
| HE Ozalj II | 2 x 1,1 | 2,2 | 1952. |
| HE Zavrelje | 1,5 | 1,5 | 1953. |
| HE Čakovec | 0,34 | 0,34 | 1982. |
| HE Krčić | 0,44 | 0,44 | 1988. |
| HE Dubrava | 2 x 0,34 | 0,68 | 19889. |
| HE Finvest I * | 4 x 0,315 | 1,26 | 1995. |
| HE Finvest II * | 0,03 | 0,03 | 1997. |
| Kupčina 6 - Stančaki * | 0,045 | 0,045 | - |
| Orljava 7 - Požeška Kopanica* | 0,065 | 0,065 | - |
| Pribranske elektrane biološkog minimuma | |||
| HE Varaždin | 0,585 | 0,585 | 1975. |
| HE Čakovec | 1,1 | 1,1 | 1982. |
| HE Dubrava | 1,12 | 1,12 | 1989. |
| Ukupno | 24,337 | ||
- .*u privatnom vlasništvu
- .**u sklopu industrijskog pogona
- vlasništvo Hrvatske elektroprivrede
Glavni dijelovi malih hidroelektrana su sljedeće strukture i uređaji:
- građevinski objekti
- hidromehanička oprema
- elektrostrojarska oprema
- priključak na dalekovodnu mrežu
Tehnička rješenja malih hidroelektrana u cilju zaštite okoliša
Da bi se hidroelektrana smatrala malom hidroelektranom, sa ciljem zaštite okoliša, pod samim pojmom se kategoriziraju energetski objekti koji iskorištavaju hidropotencijal, a istovremeno imaju sljedeća svojstva:
- karakterizira ih protočni rad ili iznimno mala akumulacija (minimiziran utjecaj na vodotok)
- paralelan rad sa mrežom i ugradnja asinkronih generatora
- kod objekata sa instaliranom snagom manjom od 100 kW nema gradnje trafostanice već se predviđa izvedba transformatora na stupu
- postrojenje se sastoji od brane (niskog preljevnog praga), dovodnog kanala i/ili cjevovoda, zgrade strojarnice i odvodnog kanala
- preljevni prag služi samo zato da uspori vodotok prije ulaska u dovodni kanal
- umjesto niskog preljevnog kanala može se upotrijebiti tzv. tirolski zahvat
- dovodni kanal zatvorenog tipa predviđen je samo za vođenje zahvaćene vode po strmim obroncima i većim dijelom je ukopan (može biti i potpuno ukopan)
- dovodni kanal otvorenog tipa predviđen je za veće količine vode i u pravilu se nalazi na manje strmim terenima
- tlačni cjevovod treba biti što manjih dimenzija i predviđen je da vodu najkraćim putem dovede do strojarnice
- zgrada strojarnice je što manjih gabarita i operacija je u potpunosti automatizirana
- odvodni kanal je otvoren i kratak i njime se voda vraća iz strojarnice u vodotok (ova voda je gotovo redovito jako obogaćena kisikom, tako da se ribe rado zadržavaju u ovom području)
Ako se pri kategorizaciji i projektiranju malih hidroelektrana drži ovih načela utjecaji na okoliš su svedeni na minimum.
Utjecaj na okoliš
Male hidroelektrane, u slučaju da su izbor lokacije i tehnološkog rješenja primjereni, nema gotovo nikakvih štetnih utjecaja na okoliš. Ako taj utjecaj i postoji, onda je on toliko mali da ne može biti mjerljiv i ne može se sa sigurnošću pripisati postojanju i radu male hidroelektrane, a ne nekom drugom od mogućih utjecaja.
Prednosti iskorištenja energije vodotokova se u prvom redu očituju u eliminiranju emisija štetnih plinova u atmosferu koju susrećemo kod elektrana na fosilna goriva. Dok je kod velikih hidroelektrana, kao posljedica gradnje velike brane sa zaštitnim mrežama koje se nalaze prije ulaska u turbinski dovodni kanal ipak prisutna emisija metana zbog zadržavanja žive tvari na zaštitnoj mreži koja tamo truli i emitira metan kao posljedicu procesa raspada organske materije, kod malih hidroelektrana brane su male, preljevne, a u slučaju, tzv., tirolskog zahvata kanal ne smije sadržavati zaštitnu mrežu i voda sa svim tvarima koje nosi sa sobom u nepromijenjenom sadržaju struji kanalom. Ovakva filozofija gradnje i tehnologija u potpunosti isključuje ikakve štetne emisije u atmosferu.
Procjena je da male hidroelektrane, instalirane snage od oko 5 MW, godišnjom produkcijom energije zamjenjuju oko 1400 toe fosilnih goriva, a time i smanjuju emisiju stakleničkih plinova u količini od 16 000 tona CO2 i 1100 tona SO2 godišnje. Zagađenje bukom je ispod svih minimalnih propisanih i predloženih razina zbog sofisticirane tehnologije koja je danas postala pravilo pri konstruiranju strojarnice male hidroelektrane.
Pri planiranju gradnje male hidroelektrane posebnu pozornost treba posvetiti:
- adekvatnom izboru lokacija malih hidroelektrana
- protoku vode
- riziku od pogrešnog gospodarenja vodenim resursima
- nedostatku biološkog minimuma količine vode
- utjecaju na floru i faunu
Također bi trebalo posebno naglasiti doprinos takvih postrojenja razvitku gospodarstva, pogotovo u nerazvijenim i dislociranim područjima.
Pogonski troškovi i mogući problemi pri provedbi projekta
Svako energetsko postrojenje, osim proizvodnje energije, također koristi i energiju za vlastiti rad. Ti troškovi se nazivaju pogonskim troškovima.
Kod vodoopskrbnih sustava u cjevovodima, hidraulička snaga koja se manifestira porastom tlaka anulira se prigušnim elementima koji su potrošači energije. Samo prigušenje tlaka može se također dobiti postavljanjem turbina na pogodna mjesta u cjevovodu i time je iz vodoopskrbnog cjevovoda moguće dobiti dio energije potrebne za, npr., pogon pumpi. Ako je moguće dobiti suvišak energije, ta energija se može dalje eksploatirati ili prodavati, čime se minimiziraju pogonski troškovi postrojenja i dodatno proizvodi korisna energija uz ekonomske beneficije.
Problemi vezani za projektiranje i puštanje u rad male hidroelektrane leže u ekonomskim i zakonodavnim izvorima. Gradnja male hidroelektrane je ekonomski zahtjevan projekt i danas je u Republici Hrvatskoj glavni problem nezainteresiranost mjerodavnih tijela za ulaganja u obnovljive izvore energije.
Dodatni problem predstavljaju česti neriješeni imovinsko-pravni odnosi na potencijalnim lokacijama izgradnje malih hidroelektrana ili implementacije istih u vodoopskrbne sustave, kao i neriješena katastarska pitanja i njihovo sporo rješavanje.
Hidroelektrane u Republici Hrvatskoj
| Naziv hidroelektrane | Nazivna snaga [MW] | Tip hidroelektrane | Proizvedena energija u 2012. godini [GWh] |
| HE ZAKUČAC | 486 | Derivacijska | 827 |
| HE SENJ | 216 | Derivacijska | 687 |
| HE DUBROVNIK | 216 | Akumulacijska | 640 |
| HE VARAŽDIN | 94 | Derivacijska s akumulacijom za dnevno uređenje dotoka(višenamjenska) | 457 |
| HE ORLOVAC | 237 | Akumulacijska | 127 |
| RHE VELEBIT | 276/240 | Reverzibilna/akumulacijska | 470/228,7 |
| HE ČAKOVEC | 76 | Derivacijska s akumulacijom za dnevno i djelomično tjedno uređenje dotoka(višenamjenska) | 378 |
| HE DUBRAVA | 76 | derivacijska s akumulacijom za dnevno i djelomično tjedno uređenje dotoka(višenamjenska) | 387 |
| HE GOJAK | 55,5 | Akumulacijsko/protočna | 175 |
| HE VINODOL | 94,5 | visokotlačna akumulacijska derivacijskog tipa | 123 |
| HE ĐALE | 40,8 | Pribranska akumulacijska | 78 |
| HE MILJACKA | 24 | Derivacijska | 51 |
| HE PERUČA | 60 | Pribranska s akumulacijskim jezerom | 56 |
| HE RIJEKA | 36,8 | Protočna | 79 |
| HE SKLOPE | 22,5 | Pribranska | 50 |
| HE KRALJEVAC | 46,4 | Derivacijska, protočna | 39 |
| HE LEŠĆE | 55,5 | Akumulacijsko/protočna | 77 |
Tablica 11 Popis velikih hidroelektrana u RH
| Naziv hidroelektrane | Nazivna snaga [MW] | Tip hidroelektrane | Proizvedena energija u 2012. godini [GWh] |
| MHE JARUGA | 7,2 | Derivacijska | 24 |
| MHE OZALJ | 5,5 | protočna | 21 |
| MHE GOLUBIĆ | 7,5 | Derivacijska | 12 |
| MHE ZELENI VIR | 1,7 | Derivacijska,protočna | 6,7 |
| MHE ROŠKI SLAP | 1,764 | Derivacijska | 7,5 |
| MHE DUBRAVA | 1,1 | Višenamjenska | 7,3 |
| MHE ČAKOVEC | 1,1 | Višenamjenska | 6,8 |
| CHE FUŽINE | 4,6 | Crpna | 1,8 |
| MHE ZAVRELJE | 2 | Akumulacijska | 5 |
| m He DUBRAVA | 0,68 | Višenamjeska | 4,0 |
| MHE VARAŽDIN | 0,58 | Višenamjenska | 3,8 |
| MHE TVORNICA CEMENTA MAJDAN | 1,2 | 3,5 | |
| MHE FINVEST I | 1 | 3,2 | |
| m HE ČAKOVEC | 0,34 | Višenamjenska | 2,2 |
| MHE PAMUČNA INDUSTRIJA DUGA RESA | 1,1 | 2,0 | |
| m HE KRČIĆ | 0,375 | Derivacijska | 1 |
| m HE PLETERNICA | 0,22 | 1,1 | |
| RHE LEPENICA | 1,14 | Reverzibilna | 0,4 |
| µHE BUJAN-KUPČINA | 0,03 | 0,1 | |
| µHE FINVEST II | 0,03 | 0,1 | |
| µHE MATAKOVIĆ | 0,015 | 0,1 | |
| µHE URH-ČABRANKA | 0,008 | 0,05 |
MHE - mala hidroelektrana ;
m HE - mini hidroelektrana ;
µHE - mikro hidroelektrana
Tablica 12 Popis malih hidroelektrana (uz mini i mikrohidroelektrane) u RH
(1) Hidroelektrane, Wikipedia : http://hr.wikipedia.org/wiki/Hidroelektrana ;
(2) Hidroelektrane u RH , Wikipedia: http://hr.wikipedia.org/wiki/Hidroelektrane_u_Hrvatskoj ;
(3) Hidroelektrane, HEP : http://www.hep.hr/proizvodnja/osnovni/hidroelektraneVjetroelektrane
Uvod
Pojam vjetroelektrana podrazumijeva sustav za transformaciju (pretvorbu) gibajuće zračne mase, odnosno vjetra u električnu energiju.
Dakle, unutar kompleksne problematike vjetrenjača vrlo značajno mjesto zauzima vjetar i vjetropotencijal kao jedan od preduvjeta funkcionalnosti takvog sustava. Vjetar kao energetski resurs karakterizira promjenjivost i nemogućnost uskladištenja što za sobom posljedično povlači potrebu za definiranjem uvjeta pogona (vjetroenergetskog sustava unutar elektroenergetskog sustava). Budući da kinetička energija vjetra ovisi o kvadratu brzine, a snaga vjetroelektrane je proporcionalna površini lopatica i trećoj potenciji brzine vjetra, promjena brzine vjetra uzrokovat će dakle promjenu aerodinamičke snage, odnosno prema jednadžbi gibanja promjenu električne snage koju generator injektira u mrežu. Brzina vjetra mjeri se anemometrom. Pri analizi stabilnosti vjetroelektrane dominantan je model promjene brzine strujanja vjetra. Kod provođenja proračuna, uglavnom se pretpostavlja da brzina vjetra u najsloženijom obliku ima 4 komponente: osnovnu komponentu brzine vjetra (eng. base), komponentu linearne promjene brzine vjetra (eng. ramp), komponentu udarne promjene brzine vjetra(eng. gust) i komponentu promjene brzine vjetra koja je podložna šumu (eng. noise). Budući da do visine 200m postoje tehnička rješenja koja kinetičku energiju gibanja zračnih masa tj. vjetra pretvaraju u električnu energiju, moguće je koristiti naziv tehnički vjetar. Struja tog vjetra poremećena je različitim utjecajima kao što su turbulencija (mehanički i termički uvjetovana lokalna nepravilna gibanja), hrapavost površine, dnevni i noćni temperaturni gradijent, topografija terena ( prepreke, uzvisine, građevine i slično) i vanjski poremećaji (silazna strujanja od oluja). Navedene prepreke na koje vjetar nastrujava na putu do vjetroturbine, dakle ometaju strujanje i općenito umanjuju vjetropotencijale.
Prilikom postavljanja vjetrenjača potrebno je izvršiti dodatni proračun vjetropotencijala (korekciju vjetropotencijala) na mjestima udaljenim od mjernih postaja, jer podaci o vjetropotencijalu (dobiveni dugotrajnim mjerenjima) na jednom mjestu nisu isti i na nekom drugom mjestu čak i ako je relativno mala njihova međusobna udaljenost.
Zbog turbulentnog karaktera strujanja vjetra potrebno je izvršiti osrednjavanje prikupljenih podataka o brzinama vjetra u određenom vremenu ( u praksi klimatologije iznosi 1h, a u sinoptičkoj praksi 10 min). Mjerenja brzine vjetra se najčešće vrše na visini od 10m. Višegodišnji prikupljeni podaci se najbolje aproksimiraju Weibullovom funkcijom (razdiobom) koja daje vjerojatnost pojave vjetra f(v) tijekom nekog vremenskog perioda.
Uslijed utjecaja hrapavosti dolazi u graničnom sloju do promjene profila brzine; brzina vjetra se mijenja po visini od 0 na tlu, do iznosa beskonačne struje.
Vrste vjetrenjača i njihova primjena
Vjetroturbina može imati jednu ili više elisa. Njezinim korištenjem transformira se energija vjetra u mehaničku energiju. Najčešće rješenje predstavlja izvedba s tri elise (s obzirom na razinu buke i vizualni efekt).
Vjetroturbine se mogu podijeliti prema različitim kriterijima. Tako npr. s obzirom na neke konstrukcijske i radne značajke postoji podjela ovisno o:
- položaju osi turbinskog kola: vjetroturbine s vodoravnom osi i okomitom osi.
- omjeru brzine najudaljenije točke rotora i brzine vjetra: brzohodne i sporohodne.
- broju lopatica: višelopatične, s nekoliko lopatica i s jednom lopaticom.
- veličini zakretnog momenta: visokomomentne i niskomomentne.
- načinu pokretanja: samokretne i nesamokretne.
- efikasnosti pretvorbe energije vjetra u zakretni moment: nisko i visoko efikasne.
- načinu okretanja rotora prema brzini vjetra: promjenjive i nepromjenjive.
Izvedbe vjetrenjača s vodoravnim vratilom, brzohodne s dvije do četiri lopatice predstavljaju klasične vjetrenjače, odnosno najveće i opće prihvaćene vrste vjetroturbina koje se koriste za proizvodnju električne energije. One se dakle najčešće nalaze u serijskoj proizvodnji,a i konstrukcijski su najviše napredovale dok su ostali tipovi primjenjivi u manjem broju ( više kao eksperimentalna postrojenja ili kao npr. višelopatične vjetrenjače koje se koriste za crpljenje vode zbog velikog torzijskog momenta koji stvaraju).U vjetroelektranama europskih zemalja i Kalifornije najčešće su korištene brzohodne vjetroturbine, okomitog vratila te propelera s dvije do tri lopatice, snage od 500 do 1500 kW.
Dijelovi vjetroturbinskog - generatorskog sustava i njihova funkcija
Segmenti turbine okomitog vratila (prikazane na slici 2.4.2.2/1.) su slijedeći:
- (1) rotor
- (2) kočnice
- (3) upravljački i nadzorni sustav
- (4) generator
- (5) zakretnik
- (6) kućište
- (7) stup
- (8) temelj
- (9) transformator
- (10) posebna oprema
- (11) prijenosnik snage
(1) Rotor
Sastavni dijelovi rotora vjetroturbine su glavčina i lopatica. Ovisno o tome kako reguliramo snagu, rotor može biti izveden:
- tako da se regulaciju napadnog kuta tijekom rada vrši zakretanjem lopatice, na način da se profil namješta u optimalni položaj (eng. pitch). Ovakva regulacija je složena i rotori ovakve izvedbe su skuplji, ali nužno primjenjeni za lopatice duže od 25-30 m. Također postoji poseban motor za zakretanje, koji mijenjajući postavni kut lopatice mijenja napadni kut struje zraka. Na taj način se postiže smanjenje snage turbine za brzine vjetra manje od projektne, odnosno brzine vjetra iznad projektne (namještajući na optimalnu vrijednost na početku rada vjetroturbine).
- tako da se regulacija snage vjetroturbine vrši korištenjem aerodinamičkog efekta poremećenog trokuta brzina (eng. stall). Dakle s promjenom brzine vjetra mijenja se na aeroprofilu napadni kut struje zraka, odnosno dolazi do poremećaja trokuta brzina te do porasta ili gubitaka uzgona (tako npr. ako brzina vjetra poraste iznad projektne vrijednosti, kut više nije optimalan). Za ovaj slučaj izvedbe rotora lopatice nemaju mogućnost zakretanja. Međutim, kako je vjetroturbina projektirana za neko područje brzina, u ovom slučaju izvedbe lopatice imaju unaprijed namješten kut za dotično područje brzina (što omogućuje najveću transformaciju energije vjetra u električnu energiju).
Lopatice
Također, s obzirom na izvedbu možemo razlikovati lopatice sa zakretnim vrhovima (kao aerodinamičkim kočnicama) ili s krilcima. Ove druge funkcioniraju na način da se krilca odvajaju od površine, smanjujući aerodinamičke značajke profila kod brzine iznad projektne. Obje izvedbe su ujedno sekundarni kočioni sustavi, koji u slučaju otkaza primarnog kočionog sustava (mehanička kočnica) stvaraju moment kočenja (zakretanjem vrha lopatice ili pomičnom ravnom površinom (eng. spoiler) ) te na taj način ograničavaju brzinu vrtnje rasterećenog kola. Dakle, zakretni vrh i pomična površina sekundarnog kočionog sustava nazivaju se kočnici, koje je moguće aktivirati središnjim zakretnim sustavom (signali ispada ili vrtnje) ili pojedinačnim neovisnim sustavom (centrifugalnom silom). Rotor za ove kočnice treba biti opskrbljen posebnim polužnim napravama namijenjenim za zakretanje. Kada je postignuto smanjenje brzine vrtnje, kočnici se vraćaju u početni položaj i čine radni dio lopatice.
(2) Kočioni sustav
Kada generator ispadne iz mreže (pobjeg), odnosno brzina naleta vjetra prijeđe maksimalnu vrijednost (isključnu vrijednost, npr. 25 m/s) dolazi do izrazitog dinamičkog opterećenja. Zato mora postojati kočioni sustav kako bi rasteretio prijenosnik snage, odnosno zaustavio rotor. Osim toga, bitno je reći da je također zadatak ovog sustava održati projektnu brzinu vrtnje konstantnom, odnosno osigurati sustav čije je djelovanje dinamički uravnoteženo.
Disk kočnica - je najčešća izvedba kočionog sustava (kojom se na suvremenim strojevima upravlja mikroprocesorski), a smještena je na sporookretnom vratilu kola prije prijenosnika (11) ili na brzookretnom vratilu generatora. Prilikom odabira broja kočionih elemenata na disku kočnice, naglasak treba staviti na izbjegavanje neuravnoteženosti obodnih sila kočenja, odnosno na postizanje opterećenosti turbine isključivo momentom kočenja. Djelovanje im može biti elektromagnetsko ili hidrauličko, a aktiviraju se signalom generatora (zbog ispada iz mreže, dakle prekid strujnog kruga) ili signalom uređaja kojim se mjeri brzina vrtnje generatora.
(3) Upravljački i nadzorni sustav
Kao što samo ime kaže, ovaj sustav je u osnovi zadužen za upravljanje i nadziranje rada vjetroturbinsko-generatorskog sustava.
Ako ovakav sustav nije u cijelosti smješten na vjetroturbinskoj jedinici (kao što može biti slučaj), već je jednim dijelom na nekom udaljenijem mjestu onda sustav zahtjeva i posebnu telekomunikacijsku opremu. Dakle, mikroprocesorski upravljani sustav nadzire i upravlja radnim procesima i zaštitom, daje podatke o radu, električkim i mehaničkim stanjima, obrađuje podatke, komunicira sa zaduženim osobljem te izvještava ili alarmira u slučaju nekakvog kvara, požara ili slično.
(4) Generator
Turbinski dio vjetrenjače s rotorom, kočnicama i prijenosnikom snage predstavlja važan dio cjelokupnog sustava, čija je osnovna funkcija pogon generatora.
Za pravilno i sigurno funkcioniranje vjetroturbinsko - generatorskog sustava, generator mora ispunjavati zahtjeve kao što su:
- visok stupanj iskoristivosti u širokom krugu opterećenja i brzine okretanja
- izdržljivost rotora na povećanim brojevima okretaja u slučaju otkazivanja svih zaštitnih sustava
- izdržljivost, odnosno postojanost konstrukcija na visokim dinamičkim opterećenjima prilikom kratkih spojeva, te pri uključivanju i isključivanju generatora
- uležištenje generatora na način da jamče dugotrajnost
Uzimajući u obzir uvjete povećane vlažnosti, slanosti, zatim otpornost na krute čestice, povišenu temperaturu i slične uvjete, pred generatore se također postavlja zahtjev pouzdanosti sa što je moguće manje održavanja. Razni su kriteriji prema kojima se može izvršiti podjela generatora. Tako npr. prema načinu rada generatori se mogu podijeliti na one:
- za paralelni rad s postojećom distributivnom mrežom
- samostalni rad
- spregnuti rad s drugim izvorima
Prema vrsti struje mogu biti: istosmjerni ili izmjenični. Istosmjerni se zbog problema s pouzdanosti rijetko primjenjuju.
Prema načinu okretanja postoje generatori: s promjenjivom ili s nepromjenjivom brzinom okretanja uz zadržavanje iste frekvencije. Također postoji podjela prema veličini tj. snazi.
(5) Zakretnik
Služi za zakretanje turbinskog ili generatorskog sustava. Nalazi se ispod kućišta vjetroturbine, na vrhu stupa. Preko pužnog prijenosa (omjera reda veličine 1:1000) s velikim zupčastim prstenom, učvršćenim na stupu, izravnava se os vratila rotora s pravcem vjetra. To je naravno, u ovisnosti o vrsti vjetroturbine, odnosno dali je ista postavljena niz vjetar ili uz vjetar. Zakretanje zapravo vrši motor. On na sebi ima ugrađenu kočnicu koja onemogućuje zakretanje kućišta zbog naleta vjetra. Zakretanje kućišta regulira sustav koji je izvan funkcije kad su poremećaji smjera vjetra manji (u prosjeku - jednom u deset minuta dogodi se zakretanje kućišta).
(6) Kućište stroja
- s jedne strane štiti generatorski sustav od okolišnih utjecaja, a s druge štiti okoliš od buke dotičnog sustava.
(7) Stup
Može biti izveden kao cjevasti konični, teleskopski, rešetkasti, učvršćeni i povezani. Danas se najčešće koristi cjevasta konstrukcija, a prednost joj se nalazi u tome što ju osim visoke čvrstoće karakterizira i veća otpornost na vibracije. Prednost rešetkaste konstrukcije nalazi se u jednostavnosti, a budući da ju je moguće rastaviti na manje dijelove prikladnija je za transport i montažu.
(11) Prijenosnik snage
U većini slučajeva je multiplikator i može biti različitih izvedbi. Hlađenje prijenosnika se najčešće vrši zrakom, a podmazivanje sintetičkim uljem. Prilikom analiziranja načina na koji se vrtnja prenosi s vjetroturbinskog kola na električni generator, naročitu važnost zauzimaju materijali izrade elemenata sklopa, vrsta prijenosa i prijenosni omjer.
Ukratko:
- vjetroturbina i generator su spojeni pomoću mehaničke spojke za koju se najčešće podrazumijeva da u sebi ima mjenjačku kutiju s prijenosnikom. Prijenosnik, kao što je već rečeno, ima funkciju prilagođavanja niže brzine vrtnje rotora vjetroturbine višoj brzini vrtnje rotora generatora.
- ukoliko su generatori višepolni niskobrzinski i po mogućnosti sinkroni s uzbudnim namotom ili uzbudnim permanentnim magnetima, mehanički prijenosnik nije potreban (što je slučaj kod vjetroturbina novijeg dizajna).
- iznos snage pretvorbe vjetroturbine regulira se pomoću sustava za upravljanje kutom zakreta elise (eng. pitch regulated), koji također može postojati unutar opreme nekih vjetroturbina ali i ne mora. Korištenjem tog regulacijskog mehanizma elisa se zakreće oko svoje duže osi i omogućuje smanjenje mehaničke snage, ovisno o karakteristikama vjetroturbine. Ako vjetroturbina nema regulacijski sustav zakretanja, naglasak se stavlja na konstrukciju elisa koje se projektiraju prema aerodinamičkom efektu - tako je, u slučaju previsokih brzina vjetra, vjetroturbina zaštićena od povišenja snage.
Mreža
Prema vrsti priključenja na mrežu vjetroelektrane se mogu podijeliti na: (izvor: CIGRE)
1. Vjetroelektrane izravno priključene na mrežu i u izvedbi sa stalnom brzinom vrtnje:
a) Vjetroturbina s asinkronim generatorom
Asinkroni generatori se najčešće koriste kada je vjetroelektrana priključena na krutu mrežu. Krutu mrežu karakterizira velika naponska i frekvencijska krutost. Osnovna prednost im je jednostavnija i jeftinija konstrukcija, iako s druge strane moraju imati kompenzacijski uređaj (uglavnom uklopive kondenzatorske baterije) i priključni uređaj kako bi se omogućilo početnu sinkronizaciju s mrežom (eng. soft. starter).
b) Vjetroturbina sa sinkronim generatorom
Sinkroni generatori se najčešće primjenjuju za pretpostavljene uvjete otočnog pogona. Ovdje su potrebni uzbudni sustav i regulator brzine koji će održavati napon i frekvenciju. Ovakvi generatori ne mogu se pronaći u komercijalnim izvedbama sa stalnom brzinom u pogonu na krutu mrežu. Kod vjetroturbina nazivnih snaga većih od 500 kW naročito je izražena potreba za uključivanjem sustava za regulaciju kuta zakretanja elise propelera, što inače nije slučaj, pa tako da se spomenuti sustav ne izvodi u svim jedinicama.
2. Vjetroelektrane u izvedbi s promjenjivom ili djelomično promjenjivom brzinom vrtnje:
a) Sinkroni ili asinkroni generator s pretvaračem u glavnom strujnom krugu
c) Asinkroni generator s upravljivim promjenljivim klizanjem
c) Asinkroni generator s nadsinkronom ili podsinkronom pretvaračkom kaskadom
Svaki od navedenih sustava može ali i ne mora imati sustav za regulaciju kuta zakreta elisa.
U odnosu na vjetroelektrane u izvedbi sa stalnom brzinom vrtnje, koje karakterizira jednostavnost i jeftinoća, vjetroelektrane u izvedbi s promjenjivom brzinom vrtnje pružaju mogućnost: veće proizvodnje električne energije, manjih mehaničkih naprezanja mehaničkih dijelova i ravnomjernije proizvodnje, manje ovisne o promjenama vjetra i njihajima u sustavu. Vjetroelektrane s vjetroturbinama čiji je raspon nazivnih snaga između 50 kW i 1500 kW, najčešće su izvedene s asinkronim generatorom izravno priključenim na mrežu, dok je priključak sinkronog generatora na mrežu korišten kod nekih malih vjetroelektrana, koje su uglavnom u samostojećim sustavima. Regulacijski sustav zakretanja elisa obično se ne izvodi kod najvećih jedinica. Pogon s promjenjivom brzinom vrtnje vjetroturbine karakterizira postizanje optimizacije učinkovitosti vjetroturbine, odnosno maksimalnog iskorištenja raspoložive energije vjetra.
Odgovarajućom kombinacijom generatora i pretvarača (koji je utemeljen na energetskoj elektronici) moguće je realizirati pogon s promjenjivom brzinom vrtnje. Postoji više takvih kombinacija, a svaka nosi sa sobom svoje prednosti i nedostatke vezano za troškove, pogonske i upravljačke karakteristike, regulaciju faktora snage, složenost, harmoničke članove, dinamička svojstva itd.
Kako bi se smanjili troškovi, električne komponente agregata se projektiraju za niske napone (do 1000 V) zbog čega su najčešće potrebni transformatori. U slučaju individualnog priključenja agregata na mrežu i vrijednosti nazivne snage vjetroelektrane manje od 100 kW, priključak je izveden na srednjenaponsku mrežu - od 10 kV do 66 kV. Za vjetroelektrane veće od 50 MW, priključak se izvodi na visokonaponsku mrežu.
U nekim zemljama priključenje vjetroelektrana na mrežu ovisi o omjeru snage kratkog spoja u točki priključenja i nazivne snage vjetroelektrane. Međutim, to vrijedi samo za slučajeve kada vjetroelektrana nije smještena u području s niskom prijenosnom moći, jer u suprotnom je teško ostvariti taj zahtjev.
Stabilnost EES-a
(izvor: CIGRE)
Sposobnost održavanja stanja pogonske ravnoteže pri normalnim uvjetima i sposobnost postizanja prihvatljivog stanja ravnoteže pri pogonskim uvjetima nakon pojave poremećaja, može se definirati kao stabilnost ees-a.
Pod pojmom stabilnost podrazumijeva se iznos napona, kut utora, frekvencija, koji mogu biti promijenjeni (poremećeni) uslijed priključenja vjetroelektrana na električnu mrežu.
Najčešća vrsta priključka vjetroelektrana je na distribucijsku mrežu. Današnji distribucijski sustavi se izvode na način da omoguće prihvat snage iz prijenosne mreže, koju će zatim razdijeliti potrošačima tako da se tokovi djelatne i jalove snage uvijek kreću u smjeru od više prema nižoj naponskoj razini.
Distribucijska mreža može biti aktivne ili pasivne naravi. Kad se kaže pasivne naravi misli se na napajanje potrošača, dok aktivna podrazumijeva tokove snaga i napone koji su određeni na osnovi kako opterećenja, tako i proizvodnje. Dakle, distribuirana proizvodnja uzrokuje promjene tokova djelatne i jalove snage, te stvara značajne tehničke i ekonomske posljedice po ees.
Kako je mreža do sad bila pasivne naravi, te je gotovo uvijek zadržavala stabilnost uz stabilnu prijenosnu mrežu, problem stabilnosti nije ulazio u analizu distribucijskih mreža. Isto tako pri procjeni iskoristivosti proizvodnje električne energije iz obnovljivih izvora, stabilnost se u većini zemalja rijetko uzima u obzir i analizira. Međutim, s očekivanim povećanjem prodiranja obnovljivih izvora te njihovim doprinosom sigurnosti mreže, predviđa se da će se takav pristup stabilnosti promijeniti s posebnim naglaskom na analizu stabilnosti kuta i napona. Stabilnost frekvencije pojavljuje se kao problem u izoliranim sustavima, kao što su oni na udaljenim otocima.
Ako postoji povećana integriranost vjetroelektrana i ees-a, u slučaju brzih promjena vjetra i vrlo visokih brzina vjetra, može doći do iznenadnih gubitaka proizvodnje, odnosno do odstupanja frekvencije i dinamički nestabilnih stanja.
Generički model proizvodne jedinice je polazna točka analize stabilnosti. Kod modeliranja vjetroelektrane, ne smije se zanemariti razmatranje elektroničkog sučelja (suvremene izvedbe) prema izmjeničnoj mreži, generatora, vjetroturbine (pogonskog stroja), te naravno vjetra kao primarnog energenta.
Zaključno, za vjetroelektrane se može reći da ih karakterizira različito električko ponašanje na naponski različitim lokacijama mreže. Dakle, priključenje vjetroelektrane u ees može biti ograničeno električkim uvjetima u mreži, usprkos visokoj tehnološkoj kvaliteti izvedbe.
Prema studijama Doc.dr.sc. Ranka Goića (jedan od većih eksperata za vjetroenergetiku u Hrvatskoj) rad vjetroelektrane na EES utječe: na lokalnoj razini (mreža), na sistemskoj razini (mreža) i na sistemskoj razini (planiranje i vođenje ees-a). Lokalni utjecaj odnosi se na zaštitu mreže, povećanje statičkih varijacija napona (što je specifično za slabije distribucijske mreže), strujno opterećenje okolne mreže te dinamičke promjene napona, flikere, harmonike. Utjecaj na mrežu na sistemskoj razini podrazumijeva dinamičku i naponsku stabilnost te održavanje frekvencije, a sistemski utjecaj i smislu planiranja i vođenja ees-a odnosi se na: regulaciju radne snage (frekvencije), nemogućnost garancije snage, na ograničenje mogućnosti planiranja proizvodnje na razini nekoliko dana, na nemogućnost dugoročnog planiranja proizvodnje, na odstupanje od ugovorenog plana razmjene sa susjednim ees-om, te na pokrivanje odstupanja planirane i realizirane potrošnje, odnosno proizvodnje npr. na satnoj razini - balansna energija.
Vjetroelektrane u novije vrijeme
Proizvodnja električne energije iz obnovljivih izvora, a posebno iz vjetroelektrana, danas zauzima značajno mjesto u okviru ekološki prihvatljivih tehnologija. Vjetroelektranu čini nekoliko blisko smještenih vjetroturbina priključenih preko zajedničkog rasklopnog uređaja na električnu mrežu. Svi vodeći svjetski proizvođači vjetroturbina ( Enercon, Vestas, GE, Gamesa itd. ) imaju u proizvodnom asortimanu turbine nominalne snage oko 1 MW i turbine s nominalnom snagom između 2 i 3 MW. Projekti vjetroparkova koji se razvijaju, kako u svijetu tako i u Hrvatskoj, predviđaju upravo vjetroturbine pojedinačne snage između 2 i 3 MW. Vjetroturbine mogu biti instalirane na kopnu ( onshore ) ili na području mora ( offshore ). Na kopnu se uglavnom postavljaju vjetroturbine snage do 3 MW, dok se vjetroturbine snage preko 3 MW instaliraju na moru. [1]
Danas se vjetroturbina pokreće automatski pri prosječnoj brzini vjetra od otprilike 3 do 5 m/s. Tijekom pogona ispod nazivne snage generatora, kut zakreta lopatica vjetroturbine i brzina rotora stalno se podešavaju za optimiranje aerodinamične učinkovitosti. Nazivnu snagu generator proizvodi pri otprilike 13 do 14 m/s te se pri višim brzinama vjetra, snaga regulira na nazivnu snagu. Konstantnost proizvodnje snage i regulacija pri različitim brzinama vrtnje smanjuje dinamičko opterećenje na konstrukciju vjetroturbine kao i na elektroenergetsku mrežu.
Ukoliko prosječna brzina vjetra premaši graničnu brzinu od 25 m/s, vjetroturbina se isključuje iz pogona okretanjem lopatica u smjer okomit na smjer vjetra. Kad se brzina vjetra spusti ispod brzine za ponovno pokretanje ( restartna brzina ), sigurnosni sustav automatski ponovno uključuje vjetroturbinu. [2]
U periodu od 2005. do 2011. proizvodnja električne energije iz vjetroelektrana se više nego udvostručila, dok od 2000-e slovi kao drugi najveći izvor obnovljive energije. [3]
Global Wind Energy Council ( GWEC ) je vijeće osnovano 2005. s ciljem osiguranja stabilne vjetroenergetike kao jednog od vodećih energetskih izvora budućnosti. [4]
GWEC procjenjuje da će u slijedećih 10 - 15 godina otprilike 30 - 35% investicija u nove elektrane odlaziti upravo u energiju vjetra. Sve veća globalna svijest o štetnosti emisija stakleničkih plinova koji se razvijaju pri klasičnim energetskim postrojenjima guraju obnovljive izvore energije u prvi plan energenata budućnosti. Budući da je u razvijenim zemljama ekonomski isplativa hidroenergija uglavnom iskorištena, energija vjetra postaje primarno rješenje energetike 21. stoljeća.
Krajem 2010. na svijetu je bilo instalirano oko 197 GW vjetroturbina, a godišnji prirast je bio oko 35 - 40 GW ( 37,642 GW 2010. ). Kina je preuzela vodeće mjesto u količini godišnjih instalacija s udjelom većim od 50% kao i vodeće mjesto u ukupno instaliranoj snazi u čemu je premašila SAD. U Europi prva dva mjesta drže Njemačka i Španjolska. Sektor vjetra u svijetu je tokom 2010. napravio profit od 40 milijardi eura, a u industriji vjetra je bilo zaposleno oko 670 000 ljudi. Najveći udio energije vjetra u ukupnoj proizvodnji električne energije je u Danskoj (21%), Portugalu (18%) i Španjolskoj (16%). [5]
EU energetski sektor je u 2012.g. izgradio vjetroelektrane kapaciteta 11.600 MW, a čime je ukupno instalirani kapacitet iz vjetra porastao na 105.600 MW. Energija iz vjetra predstavljala je 26% od svih novo izgrađenih kapaciteta u EU u 2012.godini, investicije veličine od oko 15 milijardi eura. Na kraju 2012.g. energija iz vjetra zadovoljavala je 7% europske potražnje za električnom energijom, što je povećanje u odnosu na kraj 2011.g. kada je to bilo 6.3%. Cilj EU je udjel od 20% iz (svih) obnovljivih izvora do 2020.g.
Sukladno podacima Europske udruge za energiju iz vjetra ( EWEA ), izgradnja vjetroelektrana rasla je u posljednjih 12 godina ( od 2000.g. kada je bilo izgrađeno 3.200 MW do 11.900 MW u 2012.g. ) prosječnom stopom rasta od preko 11.6%. Rast u 2012.g. bio je 12.6%. Njemačka je i dalje EU članica s najviše izgrađenih kapaciteta ( 31.307 MW na kraju 2012. ), a slijede Španjolska s 22.796 MW , Ujedinjeno Kraljevstvo s 8.445 MW i Italija s 8.144 MW. Zemlja s najvećim udjelom energije iz vjetra u ukupnoj potrošnji električne energije je Danska (27% na kraju 2012.g.), a slijede Portugal (17%), Španjolska (16%), Irska (13%) i Njemačka (11%). [2]
LITERATURA:
[1] http://www.koncar-ket.hr/docs/koncarketHR/documents/77/Original.pdf
[3] http://epp.eurostat.ec.europa.eu/statistics_explained/index.php/Energy_from_renewable_sources
[4] http://en.wikipedia.org/wiki/Global_Wind_Energy_Council
[5] http://hr.wikipedia.org/wiki/Vjetroelektrana
Priobalne vjetroelektrane
Priobalna vjetroelektrana (engl.Offshore windturbine) je vrsta vjetroelektrane s čvrstim temeljima koja se gradi na priobalnom području. Potrebno ih je razlikovati od plutajućih vjetroelektrana koje nemaju čvrste temelje nego su postavljene na pontonima i predviđene su za postavljanje na pučini. Priobalne vjetroelektrane se grade na dubinama ne većim od 80m i nisu predviđene za udaljenosti od obale veće od 50km. Evropa trenutno prednjači sa instaliranih 6,040MW (lipanj, 2013) u sektoru kombiniranog offshore vjetroenergetskog potencijala. U tome posebno prednjače Velika Britanija, Danska, Nizozemska, Belgija i Njemačka. Velika Britanija je u prvoj polovici 2013-te instalirala 513.5MW, a rujnu 2013 London Array u Velikoj Britaniji je bio najveći park priobalnih vjetroelektrana na svijetu, sa ukupnom instaliranom snagom od 630MW za što je zaslužno 175 Siemens vjetroagregata. Ova vjetroelektrana smještena je na ušću Temze, na oko 20 kilometara od obala Kenta i Eseksa. U vlasništvu je konzorcijuma kompanija Dong Energy, E.ON UK Renewables i Masdar, i stvarat će dovoljno električne energije za potrebe 500.000 britanskih domaćinstava. London Array će smanjiti godišnje emisije ugljen-dioksida za oko 900 tona, što je jednako emisiji iz 300.000 putničkih automobila, priopćeno je iz Siemens-a.
Europska udruga za korištenje energije vjetra (EWEA) ima u cilju do 2020-te instalirati 40GW, a do 2030-te 150GW snage čiji bi iznos trebao zadovoljiti 13-17% potreba za električnom energijom Europske unije. Unutar državnih akcijskih planova za obnovljive izvore energije (NREAP), koje su članice EU napravile, svaka država je stavila svoju procjenu instalirane snage priobalnih vjetroelektrana koje
će biti u pogonu do 2020. Sa samo sedam godina do tog cilja, izgleda da će samo rijetke države ispuniti svoje ciljeve do kraja 2020.
Za mnoge države kombinacija ograničenih financijskih tržišta i lokalne birokratske neefikasnosti su uzrok smanjenja broja novih instalacija. Glavni prekršitelji od većih država EU su Francuska i Njemačka. U Njemačkoj je glavni razlog sporost tijeka natječaja za zone razvijanja projekata. U Francuskoj je situacija slična, s tim da je tamo u zadnjih desetak godina tri puta promijenjena politika. Države kao Italija i Španjolska su pod udarom slabe ekonomije te priobalne vjetroelektrane više nisu proritet. Velika Britanija pak nastavlja sa razvojem po planu, dok Poljska ima potencijal izgraditi četiri puta više nego što im je bio NREAP cilj za 2020.
Tehničke karakteristike
Kod izgradnje Priobalnih vjetroelektrana velika pozornost se obraća ka stabilnosti, koja je u ovisnosti o dubini. Prema tome inženjeri su predstavili više različitih tipova temelja: • Jedan stupac (Monopile), promjera oko 6m, koristi se do dubine od 30m. • Gravitacijski temelj (Gravity-based structure), 20-80m dubine. • Conventional steel jacket temelj, koje se koriste u naftnoj i plinskoj industriji, 20-80m dubine • Tronošci (Tripod foundation), 20-80m dubine.
Temelj vjetroelektrane je pod uticajem više sila istovremeno: vlastita težina, protok vode (plima i oseka), i valovi. Dok na gornji dio konstrukcije, koji je izvan vode, djeluje sila vjetra, koja indirektno djeluje na temelj vjetroelektrane. Veliki zahtjevi se postavljaju i po pitanju otpornosti konstrukcije na koroziju, jer je izložena djelovanju morske vode i vjetra. Ovaj problem korozije se riješava katodnom zaštitom.
Do sada je najveći broj vjetroturbina i na kopnu i na moru bio sa dvo ili trostupanjskim prijenosnikom, međutim istraživanje je pokazalo da konstrukcija sa zupčanicima (veliki broj pokretnih dijelova), zbog trošenja ne može uvijek zadovoljiti previđeni vijek trajanja od 20 godina, a svaki popravak na moru je vrlo skup. Stoga su dva velika proizvođača vjetroturbina General Electric (USA) i Siemens usvojili kostrukciju bez zupčaničnog prijenosnika tj. Direct drive design. Ta tehnologija ima jedan drugi problem, a to je da za permanentni magnet u generatoru treba od 500-1000kg legure neodimij-željezo-bor za svaki MW snage. Neodimij (rijetka zemlja) je metal kojeg ima u ograničenim količinama samo u jednom rudniku u Kini.
Prijenos električne energije na kopno
Električna energija dobijena u vjetroagregatima, podvodnim kabelima se prenosi na kopno gdje se priključuje na električnu mrežu. Ukoliko se radi o većim udaljenostima ekonomičnije je prenositi istosmjernu struju visokog napona (High-Voltage, Direct Current(HVDC), jer su manji gubici, koji se manifestiraju kao jalova struja pri prijenosu izmjenične struje. Dovedena istosmjerna struja se pretvara u izmjeničnu koja se dalje razvodi na električnu mrežu. Europska transnacionalna prijenosna elektromreža za vjetroelektrane ne moru treba omogućiti prijenos električne energije iz novih 40GW do 2020.god. i očekivanih 150GW do 2030.god. Ta elektromreža sastoji se od 11 mreža koje su već u pogonu, te od 21 mreže koje su u gradnji, u projektiranju ili su u fazi studija.
Ekonomska isplativost
Europski potencijal vjetra na moru je enorman. On je od vitalnog značaja za budućnost Europe, jer daje dobar dio odgovora na europsku dilemu: „kako riješiti povećane potrebe za električnom energijom i zadovoljiti uvjete u vezi s klimatskim promjenama?“ Izgradnjom vjetroelektrana na moru, odgovor na to pitanje postiže se:
• Eksploatacijom preobilnog i besplatnog izvora energije (vjetra), bez emitiranja stakleničkih plinova;
• Smanjenjem ovisnosti o uvozu sve skupljih energenata;
• Stvaranjem nove visokotehnološke industrije, koja će kreirati tisuće novih radnih mjesta;
Tehnologija dobijanja energije iz priobalnih vjetroparkova je među najskupljim, međutim imaju veći stupanj iskoristivosti u odnosu na kopnene vjetroelektrane jer je vjetar koji puše na moru intenzivniji i kontinuiraniji, pogotovo u posljepodnevnim satima kada je i potražnja za električnom energijom najveća.
Izvori:
1. http://en.wikipedia.org/wiki/Offshore_wind_power
2. http://de.wikipedia.org/wiki/Offshore-Windpark
3. http://www.energy.siemens.com/hq/en/renewable-energy/wind-power/
4. http://www.4coffshore.com/offshorewind/
Razvoj i cijena vjetroelektrana
Ulaganje u razvoj vjetronergetike kao alternativnog izvora energije prvenstveno je bilo potaknuto ekološkim osvještavanjem čovječanstva.
Prije 10-ak godina vjetroelektrane su predstavljale neisplativ izvor energije, jer tada sa svojom cijenom i snagom nisu mogle konkurirati dominantnim tehnikama proizvodnje električne energije, kao što su hidroelektrane, termoelektrane na fosilna goriva te nuklearne elektrane. Osim toga, kako su snage koje su vjetrenjače razvijale bile male,a instalacije relativno skupe te je zbog čestih varijacija vjetra (uzrokovanih meteorološkim uvjetima) sam proces proizvodnje nekontinuiran, to je posljedično i efektivnost vjetrenjača bila mala.
Dakle, rastom ekološke svijesti čovječanstva prema okolišu koje je bilo ugroženo različitim vidovima zagađenja (kao što je uslijed izgaranja fosilnih goriva u termoelektranama dobro poznat- efekt staklenika, zatim kod nuklearnih elektrana- ekološki problem skladištenja nuklearnog otpada ili kod izgradnje hidroelektrana- uništenje riječnih staništa) rasla je i zanimacija za razmatranjem alternativnih izvora. Budući da je civilizacijskim rastom rasla i neizbježna činjenica da je potreba za energijom sve veća nastojalo se, dakle primjenom alternativnih izvora barem djelomično rasteretiti atmosferu i geosferu od spomenutih negativnih utjecaja. Tako je u cilju realizacije tog nastojanja 1997. u Kyotu održana Konferencija, gdje je donesena važna odluka u pogledu stakleničkih emisija, odnosno postavljene su smjernice za limitiranje istih kao i prijedlog prelaska na alternativne izvore energije. Razvoj tehnologija u zrakoplovstvu te tehnologije materijala u SAD-u i Europi pridonijeo je krajem 70-ih godina razvoju vjetrenjača i zamjetnijem iskorištavanju energije vjetra. Međutim, ipak se može reći da tek početkom 90-ih vjetrenjače zapravo dolaze do izražaja, a prije toga njihova upotreba se može okarakterizirati kao beznačajna. U drugoj polovici 90-ih neke europske države su (potaknute razvijenom ekološkom sviješću, tehnološkom razvijenošću, te činjenicom da značajnija kontrola nad izvorima fosilnih goriva ne postoji) krenule sa uvođenjem i značajnijim razvijanjem alternativnih izvora energije, među kojima posebno istaknuto mjesto zauzima proizvodnja električne energije pomoću vjetrenjača.
Cijena
S ekološkog stajališta energija vjetra predstavlja potpuno zadovoljavajući izvor energije. Vjetroenergetici u prilog ide i visina cijene same energije koja se, zahvaljujući unaprjeđenju tehnologije proizvodnje vjetroenergetskih postrojenja, približava prihvatljivim vrijednostima.
Tako je npr. krajem 80-ih godina cijena električne energije dobivene vjetroelektranama u SAD-u iznosila 38 c/kWh, dok je 2003. godine cijena tako dobivene energije pala na samo 3 c/kWh, a danas je uobičajeno 4 do 6 c/kWh. Dakle, osnovno nastojanje stručnjaka, prilikom osnivanja vjetrenjače, u budućnosti je smanjenje cijene proizvodnje energije na 2 do 3 c/kWh. Time bi vjetar kao energetski izvor postao konkurentan elektranama na fosilna goriva, odnosno iskorištenje energije vjetra bi podrazumijevalo prodor obnovljivih izvora energije na svjetskom tržištu energenata. Budući da Europa nema dovoljnu kontrolu tržišta fosilnih goriva, zadnjih 10 godina može se uočiti njezino stremljenje ka istraživanju i gradnji postrojenja koja koriste alternativne izvore energije, a kao najrazvijenije među njima ističe se iskorištavanje vjetra.
Cijena je jedan od važnih faktora i zapravo predstavlja najveći limit pri projektiranju i odabiru materijala i postupka za izradu vjetrenjače. Da bi dobili ciljanu cijenu proizvodnje energije vjetrom od 2 do 3 c/kWh (što je, kao što je već naglašeno, primarni cilj inženjera u budućnosti) jako je važno koncentriranje na izbjegavanje preskupih komponenti od kojih je vjetrenjača izrađena. Prema nekim statistikama npr. pogon s promjenjivom brzinom vrtnje u odnosu na pogon sa stalnom brzinom postiže na godinu i do 40% veći iznos predane električne energije. Najskuplji dio vjetroelektrane je njezina turbina, međutim veličina i cijena generatora uz uključenu učinkovitost regulacijskog sustava bez sumnje čine značajne investicijske troškove. Da bi opravdali uvođenje pogona s promjenjivom brzinom vrtnje, nužna je pažljiva financijska analiza. Ekonomsku isplativost moguće je postići i uz veće početne investicijske troškove pogona s promjenjivom brzinom vrtnje, pod uvjetom da je cijena isporučene energije dovoljno visokog iznosa.
Vjetroenergetika u Hrvatskoj
Vjetroelektrane u Hrvatskoj započele su svoj razvoj 1988. godine, kada Končar postavlja prvi vjetroagregat u brodogradilištu Uljanik, koji je u međuvremenu obustavljen, ali se i danas tamo nalazi. Trenutno u Hrvatskoj ima 9 aktivnih vjetroelektrana koje zajedno daju snagu od 176,25 MW i isporučuju električnu energiju u elektroenergetski sustav Hrvatske.
U planu je izgradnja novih 7 vjetroelektrana. Za primjer, samo ove godine u pogon su puštene VE Ponikve i VE Bruška, započeti su radovi na VE Jelinak i VE Glunča i dodano je 5 novih agregata na VE Pometeno Brdo. Za ovu godinu planiran je početak izgradnje VE Bubrig, Crni Vrh i Velika Glava, a u sljedećih godinu dana i VE Rudine (iako se trenutno ne nalazi u kvoti). Također, za budućnost su planirane izgradnja VE Voštane i VE Kamensko, zajedničke snage do 40 MW, VE Zelengrad, snage 42 MW i VE Ogorje snage 44 MW. (izvor: hep.hr) [53]
| Vjetroelektrana | Instalirana snaga (MW) | Županija | Godišnja proizvodnja (GWh) | Vjetroagregati i modeli | Puštena u rad |
|---|---|---|---|---|---|
| VE Krš-Pađene | 142 | Šibensko-kninska | 480 | 48 x Nordex | 2021. |
| VE Korlat | 58 | Šibensko-kninska | 170 | 18 x Nordex N131/3600 – 3,2 MW | 2021. |
| VE Lukovec | 48 | Splitsko-dalmatinska | 110 | 7 x GE Energy 2.85-103 – 2,85 MW
9 x GE Energy 3.2-103 – 3,2 MW |
2017. |
| VE Poštak | 44,2 | Zadarska | 100 | 13 × SWT 108 – 3,4 MW | 2017. |
| VE Danilo | 43,7 | Šibensko-kninska | 100 | 19 × Enercon E-82 – 2,3 MW | 2014. |
| VE Vrataruša | 42 | Ličko-senjska | 125 | 14 × Vestas V90 – 3 MW | 2010. |
| VE Zelengrad | 42 | Zadarska | 110 | 14 × Vestas V90 – 3 MW | 2014. |
| VE Ogorje | 42 | Splitsko-dalmatinska | 100 | 14 × Vestas V112 – 3 MW | 2015. |
| VE Kamensko-Voštane | 40 | Splitsko-dalmatinska | 114 | 14 × Siemens SWT-3.0-101 – 3 MW | 2013. |
| VE Bruška | 36,8 | Zadarska | 122 | 16 × Siemens SWT-93 – 2,3 MW | 2011. |
| VE Ponikve | 36,8 | Dubrovačko-neretvanska | 122 | 16 × Enercon E-70 – 2,3 MW | 2012. |
| VE Rudine | 34,2 | Dubrovačko-neretvanska | 85 | 12 × GE Energy 2.85-103 – 2,85 MW | 2015. |
| VE Katuni | 34,2 | Splitsko-dalmatinska | 95 | 12 × GE Energy 2.85-103 – 2,85 MW | 2016. |
| VE Jelinak | 30 | Splitsko-dalmatinska | 81 | 20 × Acciona AW 82/1500 – 1,5 MW | 2013. |
| VE Glunča | 20,7 | Šibensko-kninska | 53 | 9 x Enercon E-82 – 2,3 MW | 2016. |
| VE Pometeno brdo | 20 | Splitsko-dalmatinska | 50 | 15 × Končar KO-VA 57/1 – 1 MW
2 × Končar K80 – 2,5 MW |
2015. |
| VE Jasenice | 11,5 | Zadarska | 44 | 5 x Enercon E-70 – 2,3 MW | 2020. |
| VE Trtar-Krtolin | 11,2 | Šibensko-kninska | 28 | 14 × Enercon E-48 – 0,8 MW | 2007. |
| VE Crno Brdo | 10,5 | Šibensko-kninska | 27 | 7 × Leitwind LTW77 – 1,5 MW | 2011. |
| VE Orlice | 9,6 | Šibensko-kninska | 25 | 3 x Enercon E-48 – 0,8 MW 8 x Enercon E-44 – 0,9 MW | 2009. |
| VE Velika Popina | 9,2 | Zadarska | 26 | 4 × Siemens SWT 93 – 2,3 MW | 2011. |
| VE Zadar 4 | 9,2 | Zadarska | 30 | 4 × Siemens SWT 93 – 2,3 MW | 2013. |
| VE Ravne 1 | 5,95 | Zadarska | 15 | 14 × Vestas V90 – 3 MW | 2014. |
| VE Ogorje | 42 | Splitsko-dalmatinska | 100 | 7 × Vestas V52 – 0,85 MW | 2004. |
| UKUPNO | 789,55 | 1788 | 325 |
Najveća vjetroelektrana u Hrvatskoj je VE Vrataruša u blizini Senja, na obroncima Velebita. Izgrađena je 2009. godine, ali je zbog dugog probnog perioda puštena u pogon u siječnju 2011. Elektrana ima ukupno instaliranih 42 MW snage što ju čini najvećom u ovom dijelu Europe i ujedno je i prva vjetroelektrana u Hrvatskoj priključena na prijenosnu mrežu, na 110 kV. Sastoji se od 14 vjetroagregata pojedinačne snage 3 MW.
Vjetroelektrana Pometeno Brdo najznačajnija je po tome što je prva na kojoj su korišteni vjetroagregati koji su proizvedeni i dizajnirani u Hrvatskoj. Tvrtka Končar prije 5 godina postavila je prve agregate koje su počeli razvijati 2004. godine, a danas radi svojim punim predviđenim kapacitetom sa ukupno instaliranih 16 vjetroagregata i 17,5 MW.
Vjetropotencijal u Hrvatskoj
Vjetropotencijal je najvažniji element za izbor lokacije vjetroelektrane. U godišnjem hodu najveća srednja brzina vjetra javlja se u siječnju ili veljači, što su ujedno i mjeseci s najviše bure. Jugo u jadranskim ciklonama može znatno povisiti srednju brzinu vjetra u rano proljeće ili kasnu jesen. Kako Jadran ne obiluje jakim i olujnim vjetrom, pogodan je za iskorištavanje energije vjetra. Tome u prilog govori i činjenica što se određeni smjerovi vjetra često javljaju i dugo traju. Međutim, potencijal bure i juga nije moguće potpuno iskoristiti. Naime, vjetrovi ovakvog tipa vrlo često imaju jake udare, i do preko 100 km/h i velike oscilacije u brzini što ne samo da nije moguće iskoristiti za proizvodnju električne energije, nego i dodatno povećava zahtjeve na mehaničku stabilnost vjetroturbina. Zato se biraju lokacije na kojima bura i jugo rijetko dosežu orkansku snagu.
Atlas vjetra za cijelu Hrvatsku ne postoji, iako je u travnju ove godine Energetski institut Hrvoje Požar predstavio Atlas vjetra Zadarske županije. To istraživanje pokazalo je kako Zadarska županija ima najviše potencijala za gradnju vjetroelektrana u cijeloj Hrvatskoj. Županije koje također imaju veliki vjetropotencijal su Dubrovačko- neretvanska, Splitsko- dalmatinska i Šibensko- kninska. (izvor: eihp.hr) [58]
Bitno je napomenuti da je Vlada Uredbom o uređenju i zaštiti zaštićenog obalnog područja zabranila između ostalog i gradnju vjetroelektrana na otocima i obali 1000 metara od obalne crte. Sve je više glasova protiv takve zabrane, kako među energetičarima, tako i među aktivistima u zaštiti okoliša i predstavnicima lokalne samouprave u područjima gdje je planirana takva gradnja. Primjerice, Novalja je u prostornom planu predvidjela gradnju vjetroelektrane na predjelu Komorovac. (izvor: www.vjesnik.hr) [60]
U pogledu daljnjeg razvoja elektro- energetskog sustava u Hrvatskoj u planu je značajnija integracija vjetroelektrana, ali to znači da ona podrazumijeva značajno povećanje troškova za energiju uravnoteženja, kao i za pomoćne usluge, te povećanje investicijskih ulaganja u razvoj i revitalizaciju prijenosne mreže. Napredak u integraciji neće biti moguć ukoliko se efikasno i cjelovito ne riješi problem sekundarne regulacije i energije uravnoteženja u cijelom elektro-energetskom sustavu Republike Hrvatske. Međutim, do 2020. godine, za troškove mjera poticanja primjene vjetroelektrana u proizvodnji električne energije predviđeno je preko 700 milijuna kuna, najviše što se tiče obnovljivih izvora nakon elektrana na biomasu. (izvor: vlada.hr) [61]
Prema istom planu, kvota za vjetroelektrane određena je na brojku od 400 MW do 2020. godine, što je po nekim kritičarima premala brojka i vode se brojne rasprave upravo o toj temi.
O vjetroelektranama će se u Hrvatskoj u budućnosti sve više raspravljati, sve će ih više biti i one će postajati sve značajnije. Naravno, vjerojatno nikada neće biti vodeće u proizvodnji električne energije u RH, ali one su budućnost i u njih će se sve više ulagati.
Povijest vjetrenjača
Prijašnje izvedbe vjetrenjača koristile su drvene lopatice ili lopatice od drvene rešetke presvučene tekstilom ili lakim daščicama, koje su bile postavljene na građevinu s mlinom ili pumpom za vodu. Današnje pak vjetrenjače su karakteristične po sastavnim dijelovima kao što su vertikalna cjevasta platforma, odnosno toranj na kojemu se nalaze dvije do četiri lopatice te generator za proizvodnju električne energije. Vjetrenjače su u primjeni još od 10-og stoljeća, a Europom su se rasprostranile u 18-om stoljeću. Četrdesetih godina 20-og stoljeća Njemačka, SAD i Danska postaju značajne po proizvodnji električne energije iz vjetroelektrana, te od tada zapravo započinje masovna proizvodnja kako komponenti tako i vjetroenergetskih sustava. U 19-om stoljeću, točnije 1887. godine Charles Brush je u SAD-u napravio "gigantsku vjetrenjaču" promjera 17m s 144 lopatice od cedrovog drveta. Takva vjetrenjača punila je baterije snagom od 12 kW idućih 20 godina. Suvremene vjetrenjače su, za razliku od onih početnih, karakteristične npr. po rotoru promjera 123m te mogućnošću generiranja 5 - 6 MW energije. Za postizanje optimalnih vrijednosti, današnji proračuni ukazuju na korištenje 3 visoko učinkovite aerodinamičke lopatice i to po mogućnosti na što većoj visini, kako bi se lopatice što bolje distancirale od turbulentnog okružja. Budući otprilike 500m visine predstavlja granicu laminarnog sloja zemlje, posljedično se lopatice nastoji postaviti na što je moguće višu poziciju.
Geotermalne elektrane
Dva su osnovna načina iskorištavanja geotermalne energije: izravni i neizravni (konverzijski). U izravne načine spadaju svi postupci korištenja topline prirodnih izvora zagrijanog fluida iz Zemljine kore. Prirodno prisutni fluidi u kori mogu biti kapljevita voda s otopljenim mineralnim solima, zasićena mokra para te pregrijana para. Ovakav način je najprimitivniji i koristi se od davnina. Neke od najraširenijih primjena su: grijanje kućanstava, kuhanje, kupke te grijanje manjih poljoprivrednih plastenika.
Neizravan način korištenja sadrži energetsku transformaciju u sustavu korištenja. Geotermalna energija sadržana u zagrijanom fluidu koristi se za pogon generatora odnosno proizvodnju električne energije. Potencijal proizvodnje električne energije geotermalnim elektranama prema procjenama varira od 35 do 2000 GW. Glavni faktori o o kojima ovisi konačna brojka su: investicije, istraživanja i nadogradnja sustava za korištenje (kogeneracijski sustavi).
Najrašireniji sustav za prozivodnju električne energije korištenjem geotermalnih potencijala je enhanced geothermal system (EGS). EGS je sustav konverzijskog korištenja geotermalne energije u kojem se uspostavlja kružni proces. Prirodni tok fluida iz kore često je ograničen i otežan nepropusnošću granitnih struktura u kori. Ovaj nedostatak se rješava uvođenjem injekcijskih cijevi u kojima se uspostavlja tok hladne vode pod povišenim tlakom. Djelovanjem tokova te vode pod povišenim tlakom dolazi do probijanja stijena te oslobađanja zagrijanog fluida u pukotinama i podzemnim zdencima te također do zagrijavanja vode iz injekcijskih cijevi. Nakon prolaska kroz zagrijani sloj voda se zbog povišenog tlaka kroz drugu cijev pumpa prema površini. Na površini se zagrijani fluid iskoristi u generatoru te u kogeneracijskom dijelu postrojenja ako on postoji. Nakon što se prolaskom ohladio, fluid se ponovno pumpa kroz injekcijsku cijev i time se zatvara kružni proces.
Osnovne izvedbe geotermalnih postrojenja su:
SUSTAV SA SUHOM PAROM (direktni sustav)
Sam naziv govori da ove elektrane koriste suhu paru, odnosno pregrijanu paru. Takve izvedbe su najstarije budući da nema nikakvih dodatnih promjena stanja radnog fluida do ulaska u turbinski proces. Para direktno ulazi iz podzemnog spremnika tj. pokreće parnu turbinu. Nedostatak ovakve izvedbe je u tome što se isključivo iskorištava faza pregrijane pare i time se zapravo znatno ograničava potencijal izvora geotermalnog fluida. Danas je pojava ovakvih elektrana rjeđa ipak još uvijek se nalaze u primjeni kod postrojenja s jednostavnijom opremom i ograničenom investicijom a gdje je prirodni potencijal za nastanak pregrijane pare kao geotermalnog fluida dovoljan. Najveća ovakva elektrana u svijetu danas je u sjevernoj Kaliforniji (SAD).
FLASH SUSTAV
Flash sustav koristi više faza radnog medija tijekom procesa. U injekcijskoj cijevi nalazi se hladni fluid u kapljevitom stanju koji je pod visokim tlakom. Prolazeći proces zagrijavanja u podzemnim slojevima ulazi u izlaznu cijev i penje se prema površini. U cijevi dolazi do pojave razdvajanja (flashing) te kapljeviti fluid gura pred sobom parnu fazu. Prolaskom kroz separator plina odvaja se zagrijana kapljevina koja može biti podvrgnuta daljnjim stupnjevima vaporizacije na nižem tlaku, a para ulazi u turbinu. Ovaj princip danas je jedan od najzastupljenijih. Uz osnovnu izvedbu često se ugrađuju u sustav i kogeneracijski spremnici te tornjevi za hlađenje. Bitno je napomenuti da je potrebno nadomiještati geotermalni fluid na način da se iskorišteni preko kondenzatora pretvori u kapljevitu fazu i vrati se u podzemni sloj podalje od crpilišta.
BINARY CYCLE IZVEDBA
Najnoviji način korištenja geotermalnih elektrana je upravo Binary cycle izvedba koja sadrži dva radna medija vezana samo izmjenom topline bez miješanja tvari. Osnovni proces se odvija na način da se zagrijani fluid iz izlazne cijevi doprema u veći broj turbniskih jedinica. Međutim fluid ne ulazi u samu turbinu već prolaskom kroz izmjenjivačku površinu predaje toplinu drugom radnom mediju koji je karakteriziran znatno nižim temperaturama vrelišta čak do 14 stupnjeva Celzija. Radni medij zatim isparava i pokreće turbinu koja je preko vratila vezana na generator i tako se proizvede električna struja. Nakon prolaska kroz turbinu radni medij odlazi u izmjenjivač topline u kojem dolazi do kondenzacije a voda koja je dopremljena iz tornja za hlađenje se zagrijava i vraća u injekcijsku cijev skupa s vodom koja je izmjenila toplinu neposredno prije turbinskog procesa. Najveća prednost ovakve izvedeb je u znatno nižim temperaturama ekstrahiranog fluida. Međutim proračuni pokazuju da je zbog niže eksergije kod ovakvih proces teže postići odgovarajući output snage.
Prednosti i nedostaci geotermalnih elektrana
Geotermalna energija smatra se obnovljivim izvorom energije jer je toplinski potencijal Zemlje praktički beskonačan. Fluid koji se nalazi u slojevima nadomješta se prirodnom cirkulacijom vode. Razvojem EGS sustava omogućilo se korištenje geotermalnih potencijala i u područjima koji nemaju prirodne izvore kao što su gejziri i vruća vrela. Emisije stakleničkih plinova su znantno niže nego kod postrojenja s fosilnim gorivima zapravo je najveći nusprodukt vodena para. Budući da je zagađenje na niskoj razini gradnja ovakvih elektrana moguća je bez opasnog utjcaja na lokalni ekosustav. Mogućnosti kogeneracije kod ovih sustava su iznimno velike te podižu efikasnost koja je svojstveno niska.
Nedostaci geotermalnih postrojenja možda se najbolje očituju u visokim investicijskim troškovima te vrlo skupoj tehnologiji i održavanju. Također otkriveni su nepovoljni utjecaji na sezmološke pojave u područjima crpilišta geotermalnog fluida. Jedna od potencijalno opasnih pojava je i oslobađanje opasnih plinova kao npr. amonijaka koji se može naći u bušotinama i opasno ugroziti zdravlje ljudi. Prirodni geološki uvjeti odlučujući su faktor za izgradnju postrojenja i time onemogućavaju široku rasprostranjenost geotermalnih elektrane te podrazumijevaju nemogućnost transporta proizvodnje energije.
Elektrane na biomasu i otpad
Elektrane na biomasu i otpad su termoelektrane gdje se toplina potrebna za proizvodnju električne energije dobiva izgaranjem biomase i otpada. Pod biomasu spada svaki organski materijal koji ima neku energetsku vrijednost. Za razliku od ostalih energenata koji se koriste u konvencionalnim termoelektranama, biomasa spada pod obnovljive izvore energije. Izgaranjem biogoriva se u atmosferu oslobađa ista količina CO2 kao što bi to bio slučaj da nismo koristili biomasu za gorivo. Ugljik iz atmosfere je pohranjen u biljkama te bi u svakom slučaju ta količina CO2 bila oslobođena u atmosferu. Treba samo održavati princip obnovljivog izvora (isti broj posječenih i zasađenih drva). Isto kao i kod konvencionalnih termoenergetskih postrojenja, elektrane na biomasu i otpad posjeduju četiri glavna dijela – kotao, turbina, kondenzator i pumpa. Postoje dvije osnovne vrste tehnologije izgaranja u procesima koji se odvijaju u bioelektranama, a to su izgaranje na rešetci i izgaranje u fluidiziranom sloju.
Tehnologije izgaranja
Zbog manje homogenosti biomase od konvencionalnih energenata poput plina, nafte i ugljena potrebno je više prilagoditi tehnologije izgaranja takvoj vrsti goriva. Danas se najčešće koriste dvije tehnologije izgaranja – tehnologija izgaranja na rešetci i tehnologija izgaranja u fluidiziranom sloju
Tehnologija izgaranja na rešetci
Ova tehnologija izgaranja je tradicionalnija tehnologija. Korištena je duži niz godina i u isto vrijeme se dosta razvila pa su neki nedostatci otklonjeni. Izgaranje se odvija u kotlu. Na kotlu je smještena rešetka na kojoj se nalaze biomasa i otpad. Sam postupak izgaranja je sličan onome kod tehnologije izgaranja u fluidiziranom sloju, razlika je samo u pripremanju biomase i otpada za samo izgaranje. Tehnologija izgaranja u rešetci je pogodnija za kruta goriva (poljoprivredni i šumarski ostatci) te za postrojenja manje snage (do 5 MW). Kontrola i regulacija izgaranja se temelje na stvaranju turbulencije što pospješuje sam proces izgaranja. To se izvršava na način da se zrak upuhuje ispod same rešetke. Nedostatak ove tehnologije izgaranja jest veća nepotpunost izgaranja nego kod tehnologije fluidiziranog sloja. Nepotpunost izgaranja sama po sebi znači gubitak određene topline. To se može dogoditi zbog nedovoljne homogenosti goriva ili zbog nedovoljne količine zraka u ložištu. Zbog toga je pri samom procesu izgaranja potrebno pronaći ravnotežu između tih parametara jer preveliki pretičak zraka znači da je izgaranje nepotpuno te da je izlazna entalpija dimnih plinova veća nego li je poželjno.
Tehnologija izgaranja u fluidiziranom sloju
Tehnologija izgaranja u fluidiziranom sloju je naprednija i ekifasnija tehnologija izgaranja. Postoji razlika u pripremi samog goriva u odnosu na izgaranje na rešetci. Biomasa se miješa sa pijeskom kojeg ima više te nastaje granulirani sloj pijeska. Taj sloj se odvodi u kotao gdje se ubacuje predgrijani zrak pod nekim tlakom. Pošto pijeska u samom sloju ima više, pod utjecajem predgrijanog zraka se granulirani sloj raspršuje po cijelom prostoru što uzrokuje turbulencije koje pospješuju kontakt goriva sa kisikom. To uzrokuje bolju potpunost izgaranja koja iznosi oko 99% te sveukupnu korisnost kotla koja je otprilike 90% bez obzira na udio vlage u otpadu i jesu li komponente goriva slične kvalitete ili ne. Glavni nedostatak ove tehnologije izgaranja jest cijena koja je u odnosu na tehnologiju izgaranja na rešetci dosta veća pa se tehnologija fluidiziranog sloja koristi samo u bioelektranama snage preko 5 MW. Gledajući sveukupno, ova tehnologija izgaranja pruža veću fleksibilnost u pogledu zahtjeva na kvalitetu i vlažnost goriva. Kotlovi u kojima se koristi fluidizirani sloj mogu koristiti goriva sa visokom koncentracijom pepela i niskokalorična goriva poput raznih ostataka iz poljoprivredne proizvodnje i ostataka od sječe šuma što dodatno pospješuje fleskibilnost samog tehnološkog procesa.
PV
Uvod
Naziv fotonaponski sustav dolazi od riječi photovoltaic ili skraćeno PV što je složenica grčke riječi photo-svjetlo i pojma Volt koje dolazi od imena Alessandra Volte (1745-1827), začetnika proučavanja električne energije te se odnosi na napon. Suprotno solarnom grijanju, fotonaponski sustav direktno pretvara sunčevu energiju u električnu. Proces konverzije je zasnovan na fotoelektričnom efektu kojeg je otkrio Heinrich Rudolf Hertz 1887., a prvi ga objasnio Albert Einstein 1905. za što je 1921. dobio Nobelovu nagradu.Fotonaponski efekt je stvaranje napona u materijalu nakon izlaganja svjetlu. Iako je fotonaponski efekt izravno vezan uz fotoelektrični efekt, treba ih razlikovati. Kod fotoelektričnog efekta, elektroni se oslobađaju sa površine materijala nakon izlaganja dovoljnoj količini energije sunčeva zračenja. Fotonaponski efekt je drugačiji, kod njega se oslobođeni elektroni provode između molekula različitih spojeva materijala, što rezultira povećanjem napona između dvije elektrode.
Korisnost solarnih ćelija kreće se od svega nekoliko postotaka do četrdesetak posto. Ostala energija koja se ne pretvori u električnu uglavnom se pretvara u toplinsku i na taj način grije ćeliju. Općenito porast teperature solarne ćelije utječe na smanjene korisnosti ćelije.
Prema načinu izrade fotonaponske ćelije se dijele na:









































































